

AMP DISPLAY INC.

SPECIFICATIONS

12.1-IN COLOR LCD TFT MODULE

CUSTOMER:	
CUSTOMER PART NO.	
AMP DISPLAY PART NO.	AM-1024768DTMCW-00
APPROVED BY:	
DATE:	

APPROVED FOR SPECIFICATIONS

APPROVED FOR SPECIFICATION AND PROTOTYPES

AMP DISPLAY INC

9856 SIXTH STREET RANCHO CUCAMONGA CA 91730 TEL: 909-980-13410 FAX: 909-980-1419 WWW.AMPDISPLAY.COM

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2009/6/30		New Release	Edward

1. Features

AM-1024768D is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 12.1 inch diagonally measured active area with XGA resolutions (1024 horizontal by 768 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 262,144 colors. The TFT-LCD panel used for this module is a low reflection and higher color type.

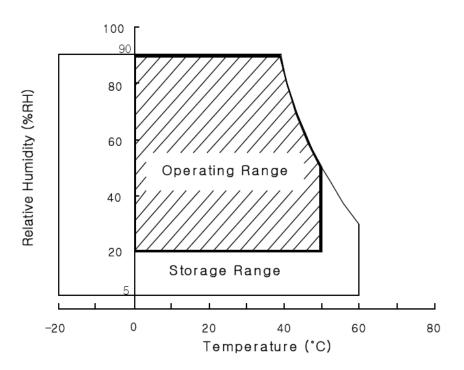
- (1) Thin and light weight
- (2) 3.3 V power supply
- (3) Low driving voltage and low power consumption
- (4) 1 Channel LVDS Interface
- (5) Single CCFL (Bottom side/Horizontal Direction)
- (6) 262,144 colors
- (7) Data enable signal mode
- (8) Side Mounting Frame
- (9) SUS Bezel
- (10) RoHS compliant.

2. PHYSICAL SPECIFICATIONS

Item	Specifications	unit	Note
Active area	245.76 (H) ×184.32 (V)	mm	
Number of pixels	1024(H) × 768(V)	pixels	
Pixel pitch	0.240(H) × 0.240(V)	mm	
Pixel arrangement	RGB Vertical stripe		
Display colors	262,144	colors	
Display mode	Normally White		
Dimensional outline	261.0 (W) ×199.0 (V) ×5.15(D)Max	mm	
Weight	280 (Typ.) / 285 (Max.)	gram	
Back-light	1-CCFL, Horizontal bottom edge type		(1)

Note : 1. CCFL (Cold Cathode Fluorescent Lamp)

3. ABSOLUTE MAX. RATINGS


ltem	Symbol	Val	ues	UNIT	Note
nem	Symbol	Min.	Max.	UNIT	Note
Logic Power Supply	VDD	VSS-0.3	4.0	V	Ta = 25 ±2 ℃
Logic Input Voltage	VIN	VSS-0.3	VDD+0.3	V	
Back-light Lamp Current	IBL	2.0	7.0	mA	
Back-light Frequency	FBL	45	80	KHz	
Operating Temperature	TOP	0	+50	°C	(1)
Storage Temperature	TSP	-20	+60	°C	

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit.

Note1. Temperature and relative humidity range are shown in the figure below.

* 90 [%] RH Max. (40°C ≥Ta)

* Maximum wet-bulb temperature at 39 $^\circ\!\mathrm{C}$ or less. (Ta $>40^\circ\!\mathrm{C}$) No condensation

4. ELECTRICAL CHARACTERISTICS

4-1 Typical Operation Conditions

l to m	Ourseland		Values			Nete
Item	Symbol	MIN	ТҮР	MAX	Unit	Note
Power Supply Voltage	VDD	3.0	3.3	3.6	V	(1)
Power Supply Current	IDD		300	500	mA	(1)
CCFL Ignition Time	t			1	sec	
High Level Differential Input Signal Voltage	VIH			+100	mV	
Low Level Differential Input Signal Voltage	VIL	-100			mV	
Back-light Lamp Voltage	VBL	690	570	565	Vrms	(2)
Back-light PWM Frequency	FPWM	200	320	350	Hz	
Back-light Lamp Current	IBL	2.0	6.0	6.5	mA	
Back-light Lamp operating Frequency	FL	45		80	KHz	One Lamp, (3)
Lamp Start Voltage		1,080			Vrms	At Ta=25℃, (4)
		1,350			Vrms	At Ta=0℃, (4)
Lamp Life		12,000	15,000		Hrs	IBL= 6mA, (5)
	PD		1.0	1.65	W	(1)
Power Consumption	PBL		3.42	3.68	W	IBL=6mA, (6)
	Ptotal		4.42	5.33	W	

Notes : 1. The supply voltage is measured and specified at the interface connector of LCM.

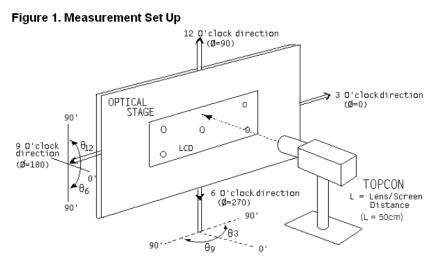
- The current draw and power consumption specified is for 3.3V @ 50Hz.
- a) Typ: Windows XP desktop Pattern b) Max: V2 Skip Pattern (L128)
- 2. Reference value, which is measured with Samsung Electric SIC-180 Inverter. (VBL Min is value at IBL Min and VBL Max is value at IBL Max)
- 3. The lamp frequency should be selected as different as possible from the horizontal synchronous frequency and its harmonics to avoid interference which may cause line flow on the display.

- 4. For starting the backlight unit, the output voltage of DC/AC's transformer should be larger than the minimum lamp starting voltage.(1,080 Vrms at 25 °C & 1,350 Vrms at 0 °C)
 If an inverter has shutdown function it should keep its output for more than 1 second even if the lamp connector open. Otherwise the lamps may not to be turned on.
- 5. End of Life shall be determined by the time when any of the following is satisfied under continuous lighting at 25°C and IBL = 6.0[mA].
 a) Intensity drops to 50% of the Initial Value.
- 6. Calculated value for reference (VBL × IBL)

5. Optical Specifications

5-1 Overview

The test of Optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = $25\pm2^{\circ}$ C) with the equipment of Luminance meter system (Goniometer system and TOPCONE BM-5) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0°. We refer to $\theta \emptyset = 0$ (= $\theta 3$) as the 3 o'clock direction (the "right"), $\theta \emptyset = 90$ (= $\theta 12$) as the 12 o'clock direction ("upward"), $\theta \emptyset = 180$ (= $\theta 9$) as the 9 o'clock direction ("left") and $\theta \emptyset = 270$ (= $\theta 6$) as the 6 o'clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the Display surface shall stay fixed. The backlight should be operating for 30 minutes prior to measurement... VDD shall be 3.3+/- 0.3V at 25°C. Optimum viewing angle direction is 6 o'clock.

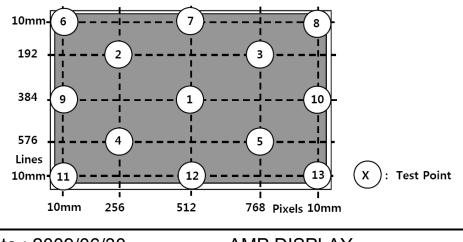

5-2 Optical Specifications

Iter	~	Symbol	Condition		Values		Unit	Note
Ite	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Horizontal	Θ3			45			
Viewing	HUHZUHlai	Θ9			45		Dee	(1)
Angle Range	Vertical	Θ12	CR > 10		15		Deg.	(1)
	Vertical	Θ6			30			
Luminance		CR	Θ = 0°		200			(2)
Luminance of White	1 Point Center	Yw			220		cd/m	(3)
White	5 Points	ΔΥ5	$\Theta = 0^{\circ}$ IBL = 6mA	80	85		%	(4)
Luminance - Uniformity	13 Points	ΔY13		65	75		%	(4)
White Chr	omoticity	Xw	Θ = 0°	0.288	0.318	0.348		(5)
White Chr	omaticity	Yw	0-0	0.302	0.332	0.362		(5)
	Red	XR		0.551	0.581	0.611		
	Reu	YR		0.307	0.337	0.367		
Reproduction	n Green	XG	Θ = 0°	0.279	0.309	0.339		
of color	Green	YG	0-0	0.514	0.544	0.574		
	Blue	Хв		0.120	0.150	0.180		
	Diue	Yв		0.113	0.143	0.173		
Response	Rise	Tr	Ta= 25℃		10	20	ms	(6)
Time	Decay	Td	$\Theta = 0^{\circ}$		20	40	ms	
Cross	Talk	СТ	Θ = 0°			2.0	%	(7)

(Table 4.)

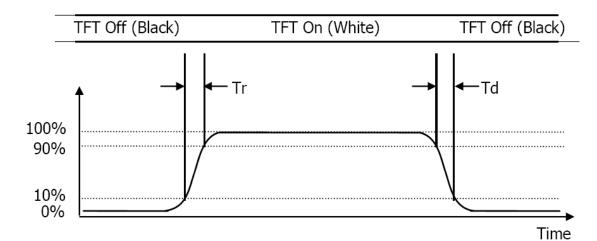
Note :

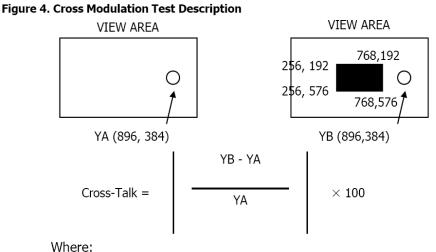
 Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface



2. Contrast measurements shall be made at viewing angle of Θ = 0° and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. Luminance Contrast Ratio (CR) is defined mathematically.

Luminance when displaying a white raster


3. Center Luminance of white is defined as luminance values of center 1 point across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in FIGURE 2 for a total of the measurements per display. And the typical luminance is measured at 6mA lamp current.



- The White luminance uniformity on LCD surface is then expressed as : ΔY = Minimum Luminance of 5(or 13) points / Maximum Luminance of 5(or 13) points (see FIGURE 2 shown in Appendix).
- 5. The color chromaticity coordinates specified in Table 4 shall be calculated from 5. the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 6. The electro-optical response time measurements shall be made as FIGURE 3 shown in Appendix by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is Tr, and 90% to 10% is Td.

Figure 3. Response Time Testing

7. Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark. (See FIGURE 4 shown in Appendix).

 $Y_A =$ Initial luminance of measured area (cd/m²) $Y_B =$ Subsequent luminance of measured area (cd/m²) The location measured will be exactly the same in both patterns.

6. INTERFACE

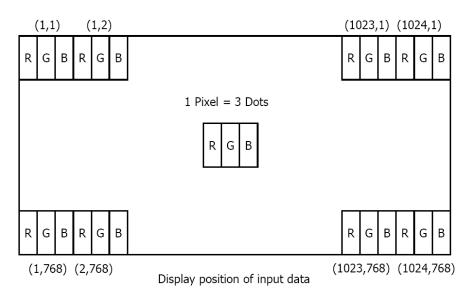
6.1 Electrical Interface Connection

CN1 : Interface Connector : Hirose/DF19KR-20P-1H or equivalent User side Connector : Hirose/DF19G-20S-1C or equivalent

Pin No.	Symbol	Description	Note
1	VDD1	Power Supply: +3.3V	
2	VDD2	Power Supply: +3.3V	
3	VSS	Ground	
4	VSS	Ground	
5	RIN0-	LVDS Negative data signal (-)	Tx pin # 48
6	RIN0+	LVDS Positive data signal (+)	Tx pin # 47
7	VSS	Ground	
8	RIN1-	LVDS Negative data signal (-)	Tx pin # 46
9	RIN1+	LVDS Positive data signal (+)	Tx pin # 45
10	VSS	Ground	
11	RIN2-	LVDS Negative data signal (-)	Tx pin # 42
12	RIN2+	LVDS Positive data signal (+)	Tx pin # 41
13	VSS	Ground	
14	RCLKIN-	LVDS Negative clock signal (-)	Tx pin # 40
15	RCLKIN+	LVDS Positive clock signal (+)	Tx pin # 39
16	VSS	Ground	
17	NC	No Connection	
18	NC	No Connection	
19	NC	No Connection	
20	NC	No Connection	

6.2 Back-light interface

CN2 : Interface Connector : BHSR-02VS-1 (JST) or equivalent

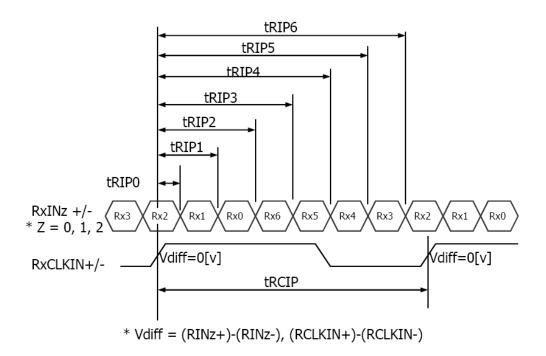

Pin No.	Input	Description	Note
1	HOT	High voltage	Pink
2	COLD	Ground	Black

6.3 LVDS Interface

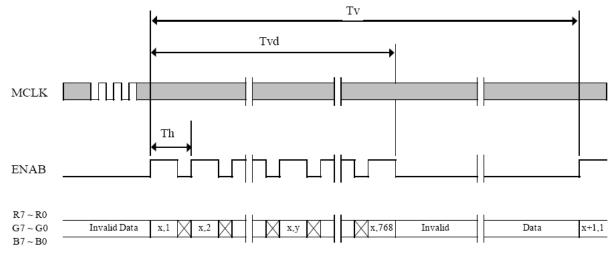
LVDS Transmitter : THC63LVDM83A or equivalent.

Input	Trans	mitter	Inte	rface	DF19KR-20P-1H	Noto
Signal	Pin No.	Pin No.	System(TX)	TFT-LCD(RX)	Pin No.	Note
R0	51					
R1	52					
R2	54	48	OUT0-	IN0-	5	
R3	55	40 47	OUT0- OUT0+	INO- INO+	5 6	
R4	56	47	0010+	INUT	0	
R5	3					
G0	4					
G1	6					
G2	7	46		IN1- IN1+		
G3	11		OUT1- OUT1+		8	
G4	12	40 45			9	
G5	14	75	0011		5	
B0	15					
B1	19					
B2	20					
B3	22					
B4	23	42	OUT2-	IN2-	11	
B5	24	42 41	OUT2-	IN2- IN2+	12	
HSYNC	27	71	00121	IINZ '	12	
VSYNC	28					
DE	30					
MCLK	31	40	CLKOUT-	CLKIN-	14	
		39	CLKOUT+	CLKIN+	15	

6.4 Data Input Format

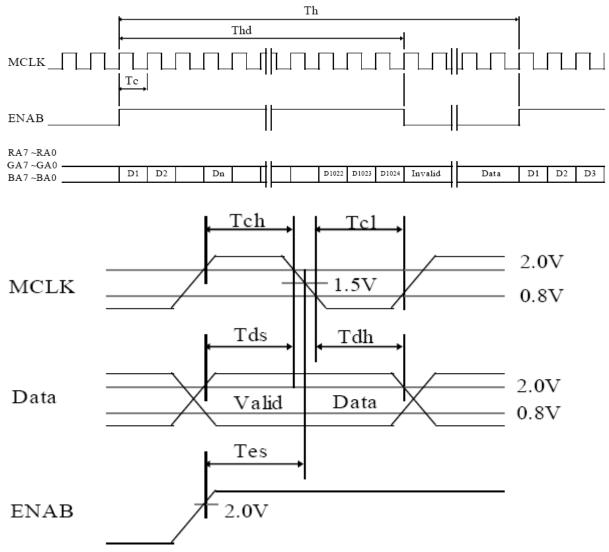

7. Signal Timing Specifications

7-1 The 12.1"XGA LCM is operated by the only DE mode (LVDS Transmitter Input)


Item		Symbols	Min	Тур	Max	Unit	
	Frequency	1/Tc	-	65	80	MHz	
Clock	High Time	Tch	4.5	4.5		ns	
	Low Time	Tcl	4.5	-	-	ns	
Data	Setup Time	Tds	2.7	-	-	ns	
Dala	Hold Time	Tdh	0	-	-	ns	
Data Ena	able Setup Time	Tes	2.7	-	-	ns	
Frame P	eriod	Τv	772	806	1022	lines	
Vertical	Display Period	Tvd	768	768	768	lines	
One Line Scanning Period		Th	1100	1344	2046	clocks	
Horizont	al Display Period	Thd	1024	1024	1024	clocks	

7-2 LVDS Rx Interface Timing Parameter

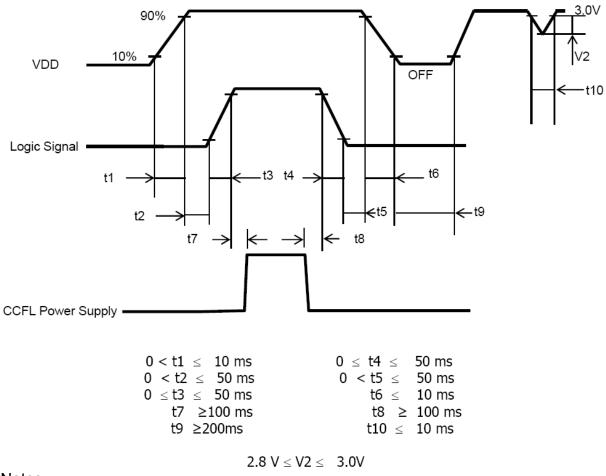
Item	Symbol	Min	Тур	Max	Unit	Remark
CLKIN Period	tRCIP	12.5	15.38		nsec	
Input Data 0	tRIP0	-0.4	0.0	+0.4	nsec	
Input Data 1	tRIP1	tRICP/7-0.4	tRICP/7	tRICP/7+0.4	nsec	
Input Data 2	tRIP2	2 imestRICP/7-0.4	$2 \times tRICP/7$	$2 \times tRICP/7+0.4$	nsec	
Input Data 3	tRIP3	3 ×tRICP/7-0.4	3 ×tRICP/7	3 ×tRICP/7+0.4	nsec	
Input Data 4	tRIP4	4 $ imes$ tRICP/7-0.4	4 imestRICP/7	$4 \times tRICP/7+0.4$	nsec	
Input Data 5	tRIP5	5 imestRICP/7-0.4	5 imes tRICP/7	$5 \times tRICP/7+0.4$	nsec	
Input Data 6	tRIP6	6 imestRICP/7-0.4	6 imestRICP/7	$6 \times tRICP/7+0.4$	nsec	



8. Signal Timing Waveforms Of Interface Signal (DE Mode)

8.1 Vertical Timing Waveforms

8.1 Horizontal Timing Waveforms



9. Input Signals, Basic Display Coors & Gray Scale Of Colors

Color	s & Gray			Red [Data				(Green	Data					Blue	Data		
	Scale	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
Colors	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\triangle	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Darker	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	\triangle			\downarrow						\downarrow	,					,	Ļ		
Of	\bigtriangledown		-	\downarrow					-	↓					-		Ļ	-	
Red	Brighter	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	\bigtriangledown	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	\bigtriangleup	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Darker	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	\bigtriangleup	Ļ					\downarrow					↓							
Of	\bigtriangledown			\downarrow						\downarrow				↓					
Green	Brighter	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	\bigtriangledown	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Darker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale				\downarrow						\downarrow						,	ļ		
Of Blue	\bigtriangledown			Ļ						Ļ						,	Ļ		
Diue	Brighter	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	\bigtriangledown	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	\triangle	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1
Scale	Darker	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0
Of	\bigtriangleup			Ļ						\downarrow	,					,	Ļ		
White &	\bigtriangledown \downarrow						Ļ							Ļ		┍──┥			
∝ Black	Brighter	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	1	0	1
	\bigtriangledown	1	1	1	1	1	0	1	1	1	1	1	0	1	1	1	1	1	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

10. Power Sequence

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown in below

Notes :

- 1. When the power supply VDD is 0V, Keep the level of input signals on the low or keep high impedance.
- 2. Do not keep the interface signal high impedance when power is on.
- 3. Back Light must be turn on after power for logic and interface signal are valid.

11. RELIABILITY TEST CONDITIONS

Item	Test Conditions	Note
High temperature storage test	Ta = 60 °C, 240 hrs	
Low temperature storage test	Ta = -20 °C, 240 hrs	
High temperature & high humidity operation test	Ta = 50 ℃, 80%RH, 240hrs	
High temperature operation test	Ta = 50 °C, 240 hrs	
Low temperature operation test	Ta = 0 °C, 240 hrs	
Thermal shock	Ta = -20 °C ~ 60 °C (0.5H), 100 cycle	
Vibration test (non-operating)	Frequency : 10~300Hz Gravity/AMP : 1.5G Period : X,Y,Z 30min	
Shock test (non-operating)	Gravity : 210G Pulse width : 3ms, half sine wave ±X, ±Y, ±Z Once for each direction	
Electro-Static Discharge Test (non-operating)	Air : 150pF 330ohm 15KV Contact : 150pF, 330ohm, 8KV	

12. HANDLING & CAUTIONS

12.1 Cautions when taking out the module

Pick the pouch only, when taking out module from a shipping package.

12.2 Cautions for handling the module

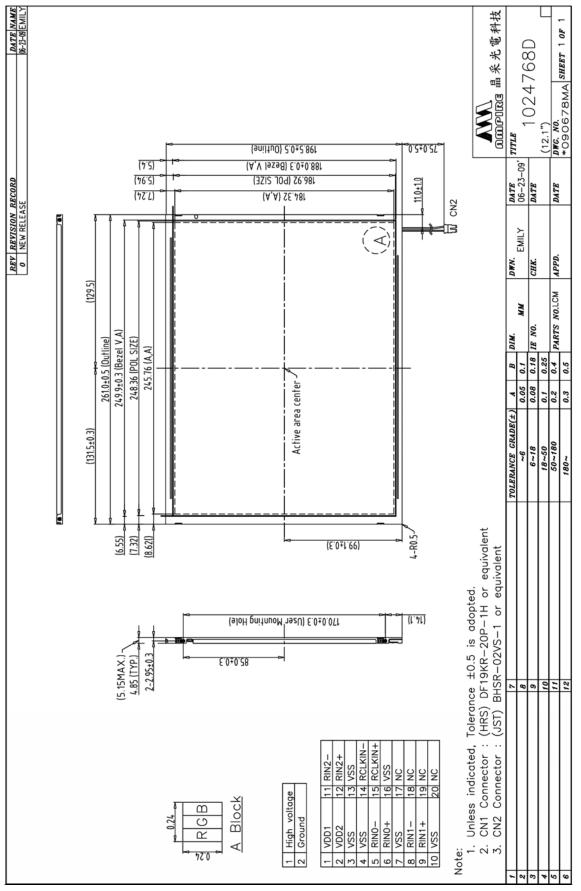
- 12.2.1 As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
- 12.2.2 As the LCD panel and backlight element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
- 12.2.3 As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
- 12.2.4 Do not pull the interface connector in or out while the LCD module is operating.
- 12.2.5 Put the module display side down on a flat horizontal plane.
- 12.2.6 Handle connectors and cables with care.

12.3 Cautions for the operation

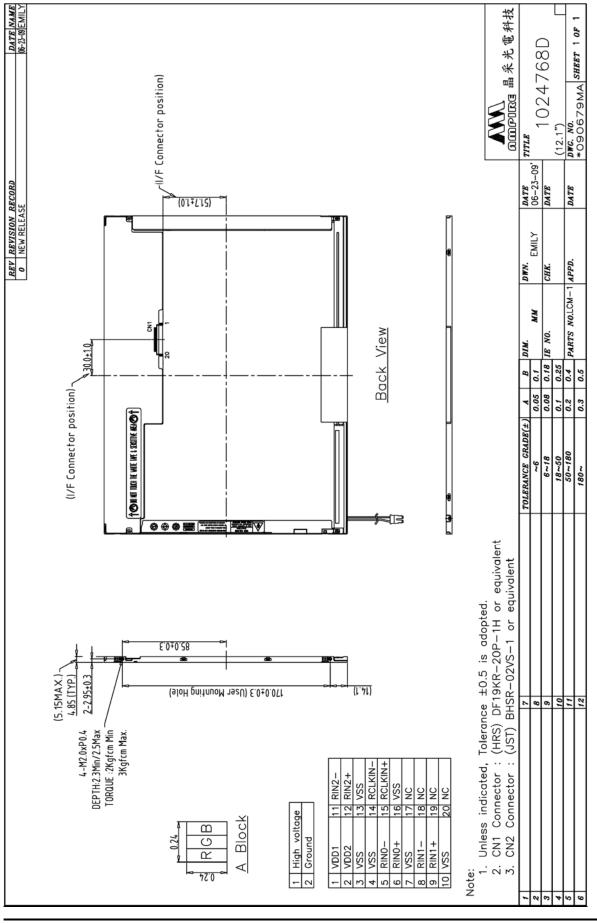
- 12.3.1 When the module is operating, do not lose MCLK, DE signals. If any one of these signals were lost, the LCD panel would be damaged.
- 12.3.2 Obey the supply voltage sequence. If wrong sequence were applied, the module would be damaged.

12.4 Cautions for the atmosphere

- 12.4.1 Dewdrop atmosphere should be avoided.
- 12.4.2 Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer-packing pouch and under relatively low temperature atmosphere is recommended.


12.5 Cautions for the module characteristics

- 12.5.1 Do not apply fixed pattern data signal to the LCD module at product aging.
- 12.5.2 Applying fixed pattern for a long time may cause image sticking.


12.6 Other cautions

- 12.6.1 Do not disassemble and/or re-assemble LCD module.
- 12.6.2 Do not re-adjust variable resistor or switch etc.
- 12.6.3 When returning the module for repair or etc, please pack the module not to be broken. We recommend using the original shipping packages.
- 12.6.4 AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

13. OUTLINE DIMENSION

Date : 2009/06/30

Date : 2009/06/30

AMP DISPLAY