

AMP DISPLAY INC.

SPECIFICATIONS

2.0 TFT MODULE

CUSTOMER:		
CUSTOMER PART NO.		
AMP DISPLAY PART NO.	AM-176220C2TMQW-00	Н
APPROVED BY:		
DATE:		
	OR SPECIFICATIONS OR SPECIFICATION AND PROTOT	YPES

AMP DISPLAY INC

9856 SIXTH STREET RANCHO CUCAMONGA CA 91730 TEL: 909-980-13410 FAX: 909-980-1419 WWW.AMPDISPLAY.COM

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2006/12/27	-	New Release	Edward

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

1 Features

This single-display module is suitable for cellphone application. The Main-LCD adopts one backlight with High brightness 3-lamps white LED.

- (1) Main LCD: 1.1 Amorphous-TFT 2.0 inch display, Transmissive, Positive type, Normally white type, 6 o'clock.
 - 1.2 176(RGB)X220 dots Matrix, 1/220 Duty.
 - 1.3 Narrow-contact ledge technique.
 - 1.4 Main LCD Driver IC: HX8306A
 - 1.5 Full 262K colors display.

Back ground : black (Back-Light, Red, Green, Blue dots are off state)

- (2) Low cross talk by frame rate modulation
- (3) Direct data display with display RAM
- (4) Partial display function: You can save power by limiting the display space.
- (5) MPU interface: 8bit/16bit/80Serial, parallel interface.
- (6) 18-bit bus RGB interface.
- (7) Abundant command functions:

Area scroll function

Display direction switching function

Power saving function

Electric volume control function: you are able to program the temperature compensation function.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

2 Mechanical specifications

Dimensions and weight

Item		Specifications	Unit
External shape dimensions		*80(W) x 53(H) x 3.2 (D) Max.	mm
Main	Pixel pitch	0.180 (W) x 0.180(H)	mm
LCD	Active area	31.68 (W) x 39.6 (H)	mm
LOD	Viewing area	33.68 (W) x 41.2 (H)	mm
Weight		T.B.D	g

^{*1.} This specification is about External shape on shipment from AMPIRE.

3 Absolute max. ratings and environment

3-1 Absolute max. ratings

Ta=25°C GND=0V

Item	Symbol	Min.	Max.	Unit	Remarks
Power voltage	VDD – GND	-0.3	+4.0	V	
Power voltage	LED A – LED K	-0.5	+12.8	V	
Input voltage	VIN	-0.5	VDD+0.5	V	

3-2 Environment

Item	Specifications	Remarks
Storage temperature	Max. +80 °C Min30 °C	Note 1: Non-condensing
Operating temperature	Max. +70 °C Min20 °C	Note 1: Non-condensing

Note 1: Ta≤+40 °C · · · Max.85%RH

Ta>+40 $^{\circ}$ C · · · The max. humidity should not exceed the humidity with 40 $^{\circ}$ C 85%RH.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

4 Electrical specifications

4-1 Electrical characteristics of LCM

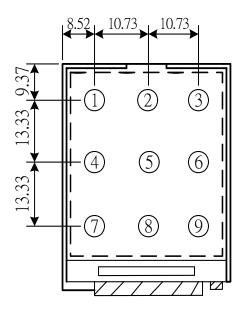
 $(V_{DD}=3.0V, Ta=25 \,{}^{\circ}C)$

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IC power voltage	V_{DD}		2.4	3.0	3.6	V
High-level input voltage	V _{IHC}		0.8V _{DD}		V_{DD}	V
Low-level input voltage	V _{ILC}		0		0.2V _{DD}	V
Consumption current of VDD	I _{DD}	LED OFF	-	4		mA
Consumption current of LED	I _{LED_ON}	V _{LED_ON} =12.0V	-	15	20	mA

 ^{1. 1/220} duty.

2. Electronic Volumn value: (xxxxh) Decimal

3. Thermal Gradient: -0.05%/°C

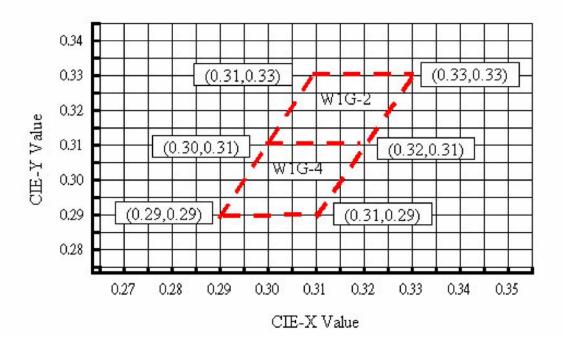

4. Range of Electronic Volumn control : (xxxxH±3) Decimal

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

4-2 LED back light specification

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Forward voltage	V_{f}	I _f =15mA	9.3	9.8	10.8	V
Reverse voltage	V _r		-	-	12	V
Forward current	I _f	3-chip serial	12	15	20	mA
Power Consumption	P_{BL}	I _f =15mA	-	162	-	mW
Uniformity (with L/G)	-	I _f =15mA	80%*1	-	-	
Bare LED Luminous intensity	V _f	9.8V 15mA	2400	-	-	cd/m ²
Luminous color	White					
Chip connection	3 chip serial connection					

Bare LED measure position:


*1 Uniformity (LT):
$$\frac{Min(P1 \sim P9)}{Max(P1 \sim P9)} \times 100 \ge 80\%$$

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

4.3 CIE, Brightness, and Vf Classification

CIE, Brightness, and Vf Classification (at 20mA)

	CIE(X,Y)	Brightness (Iv)	Vf
W1G-2	(0.31, 0.33) – (0.33, 0.33) - (0.30, 0.31) – (0.32,0.31) -	1000 ~ 1100 mcd	3.0 ~ 3.1 3.1 ~ 3.2 3.2 ~ 3.3
W1G-4	(0.30, 0.31) – (0.32,0.31) - (0.29, 0.29) – (0.31,0.29) -	1100 ~ 1200 mcd 1200 ~ 1300 mcd	3.3 ~ 3.4 3.4 ~ 3.5 3.5 ~ 3.6

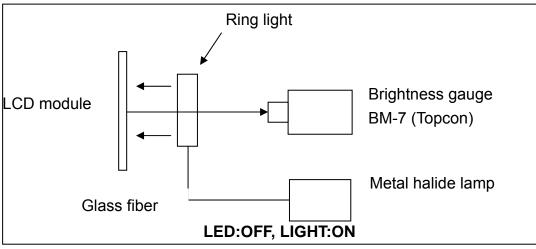
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

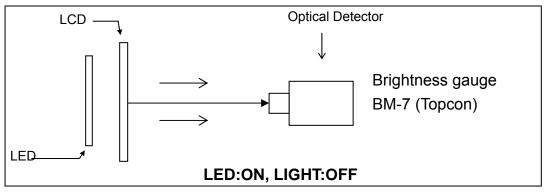
5 Optical characteristics

Main LCD

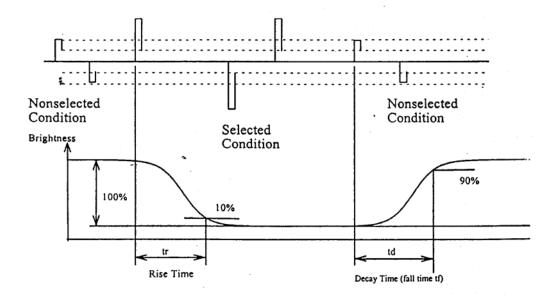
5.1 Optical characteristics

 $(1/220 \text{ Duty in case except as specified elsewhere Ta = }25^{\circ}\text{C})$

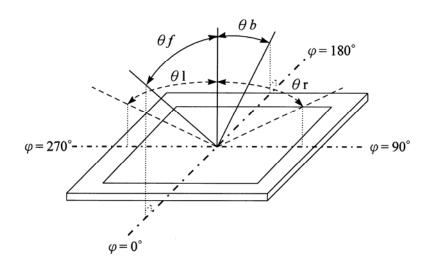

LED backlight transmissive module:


lto.mo	Cymahal	Taman	Min	Ctd	Max	l lm:#	Conditions
Item	Symbol	Temp.	Min.	Std.	Max.	Unit	Conditions
Response	Tr	25 °C	-	15	30	mo	θ =0 ° , φ =0 °
time	Tf	25 °C	-	30	50	ms	(Note 2)
Contrast ratio	CR	25 °C	200	-	-	-	$\theta = 0^{\circ}, \varphi = 0^{\circ}$
Transmittance	Т	25 °C	-	6.7	-	%	
Visual angle range front and rear	θ	25 °C		(θ f) 45 (θ b) 15		De- gree	φ = 0°, CR ≥ 10 (Note 3)
Visual angle range left and right	θ	25 °C		(<i>θ</i> I) 50 (<i>θ</i> r) 45		De- gree	φ =90°, CR≧10 (Note 3)
Visual angle direction priority				6:00			(Note 5)
Brightness				200		Cd/ m2	V _{LED} =12V, 15mA Full White pattern

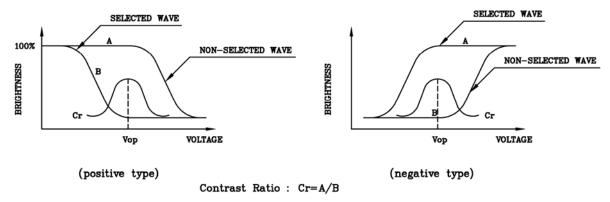
5.2 CIE (x, y) chromaticity (1/220 Duty Ta = 25° C)


Item	Symbol	-	Transmissive	Conditions	
item	Cymbol	Min.	Std.	Max.	Conditions
Red	х	0.5339	0.5839	0.6339	$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
	У	0.3128	0.3628	0.4128	- 7,
Green	Х	0.3005	0.3505	0.4005	$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
0.00	У	0.5403	0.5903	0.6403	,,
Blue	х	0.0969	0.1469	0.1969	$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
2.00	У	0.0927	0.1427	0.1927	, ,
	Х	0.2820	0.3320	0.3820	$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
White	У	0.3111	0.3611	0.4111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	L	200	-	-	$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
Black	L	0.5	-	1.2	θ =0° , φ =0°

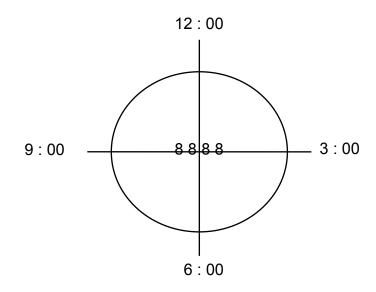
NOTE 1: Optical characteristic measurement system



NOTE 2: Response tome definition



The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD


NOTE 3: $\varphi \cdot \theta$ definition

NOTE 4: Contrast definition

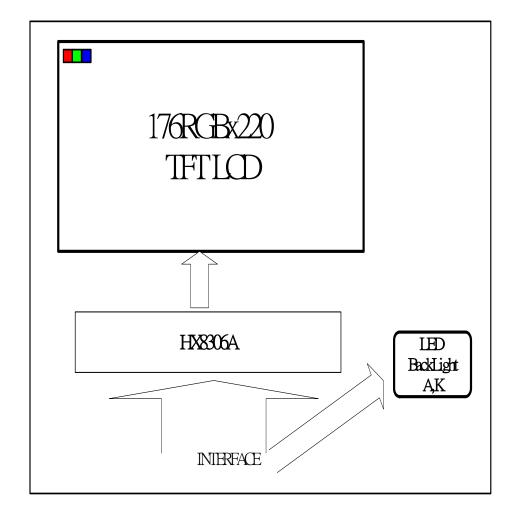
NOTE 5: Visual angle direction priority

10

Date: 2006/12/27 AMPIRE CO., LTD.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

6 Block Diagram


Block diagram (Main LCD)

Display format: A-Si TFT transmissive, Normally white type, 6 o'clock.

Display composition: 176 x RGB x 220 dots

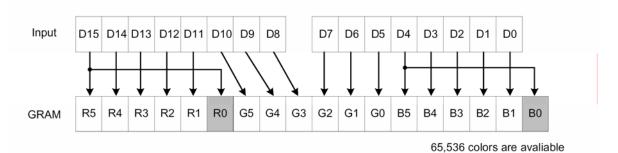
LCD Driver: HX8306A

Back light: White LED x 3 (I_{LED} =15mA)

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

7 Interface specifications

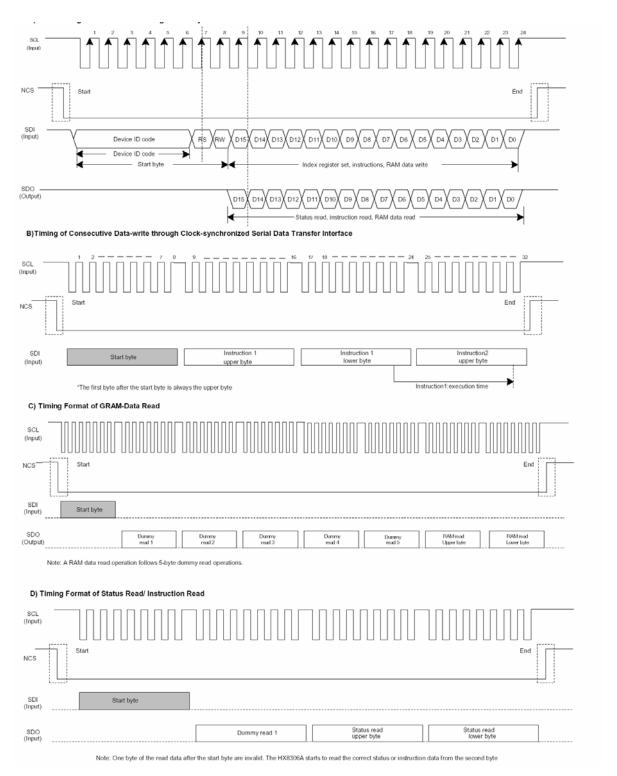
Pin No.	Terminal	Functions			
1	GND	GND-terminal for analog circuit			
2	LD0				
3	LD1				
4	LD2	18-bits RGB Interface Circuit			
5	LD3	TO She responded on our			
6	LD4				
7	LD5				
8	VSYNC	Frame synchronizing signal in RGB I/F mode.			
9	HSYNC	Frame synchronizing signal in RGB I/F mode.			
10	DOTCLK	Dot clock signal in RGB I/F mode.			
11	DE	A data ENABLE signal in RGB I/F mode.			
12	LCS	Main LCD chip select at low.			
13	Α0	 Command / data select input terminal. Data with "H," and command with "L". Connect to VCC or GND level when serial data transfer interface is selected. 			
14	SDI	When Serial Data Input pin in Serial Data Transfer interface. The input data is latched by the rising edge of the SCL signal on the chip. series MPU			
15	E_NWR	Serves as a write signal and writes data at the rising edge in i80 system interface. Serves as the synchronous clock signal in serial data transfer interface.			
16	RESET	Reset pin. Setting either pin low initializes the LSI. Must be reset after power is supplied.			
17	XL				
18	YD				
19	XR	Touch panel pad.			
20	YU				
21	GND	GND-terminal for analog circuit			
22	IOVCC	Power supply for internal core logic when VDC is disabled. Voltage range: 1.65 ~ 3.3V if VDC is disabled. Tie together with VCC if VDC is enabled.			
23	VCC	Power input terminal (System Power).			
24	GND				
25	GND				
26	GND	GND-terminal for analog circuit			
27	GND				


Date: 2006/12/27 AMPIRE CO., LTD.

28	LD12						
29	LD13						
30	LD14	18-bits RGB Interface Circuit					
31	LD15	18-bits RGB interface Circuit					
32	LD16						
33	LD17						
34	GND	OND to order to a section of					
35	GND	GND-terminal for analog circuit					
36	LD6						
37	LD7						
38	LD8	18-bits RGB Interface Circuit					
39	LD9	To-DIS RGB IIILEHACE CITCUIL					
40	LD10						
41	LD11						
42	GND	GND-terminal for analog circuit					
43	GND	GND-terminal for analog circuit					
44	VCI	For analog circuit power supply. Connect to an external power supply 2.5V~3.3V.					
45	GND	CND terminal for analog circuit					
46	GND	GND-terminal for analog circuit					
47	ANODE	LED Backlight A terminal					
48	CATHODE	LED Backlight K terminal					
49	GND	GND-terminal for analog circuit					
50	GND	OND-terminal for analog circuit					

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

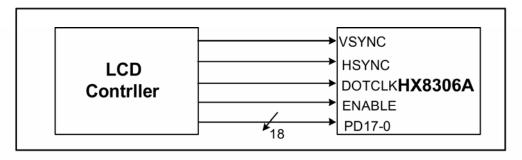
7.1 System interface


Serial Data Transfer Interface

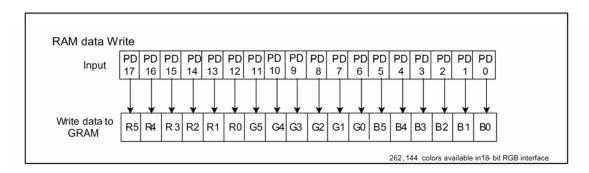
Data Format of Serial Data Transfer Interface GRAM

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

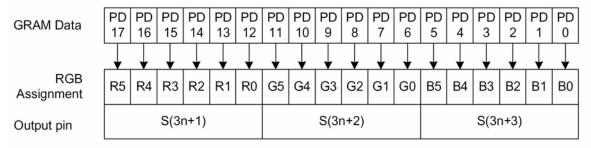
Basic Timing Transfer Format through Clock-Synchronized Serial Data Transfer Interface



Data transfer through Serial Data Transfer Interface


The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

7.2 18-bit bus RGB interface


Example of 18-bit bus Interface

18-bit RGB interface

Data format for 18-bit interface

Note: n = lower eight bits of address (0 to 175)

GRAM data and display data: RGB interface (SS= "0", RGB= "0")

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

INSTRUCTION DESCRIPTIONS

7.3 Instruction List

Reg.	Pagiotar	R/W	RS				Upper	Code)						Lower	Code			
No.	Register	K/VV	Ko	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
IR	Index	0	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0
SR	Status read	1	0	L7	L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0
R00h	Oscillation Start	0	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1
Roon	Device code read	1	1	0	0	0	0	0	1	1	1	1	0	0	0	1	0	0	1
R01h	Driver output control	0	1	0	VSPL (0)	SHP L(0)	DPL (0)	EPL (0)	SM (0)	GS (0)	SS (0)	0	0	0	NL4 (1)	NL3 (1)	NL2 (1)	NL1 (0)	NL0 (1)
R02h	LCD drive AC control	0	1	0	0	0	0	FLD (0)	FLD0 (1)	B/C (0)	EOR (0)	0	0	NW5 (0)	NW4 (0)	NW3 (0)	NW2 (0)	NW1 (0)	NW0 (0)
R03h	Entry mode	0	1	TPI (0)	DFM 1(0)	DFM 0(0)	BGR (0)	0	0	HWM (0)	0	0	0	ID1 (1)	ID0 (1)	AM (0)	LG2 (0)	LG1 (0)	LG0 (0)
R04h	Compare register (1)	0	1	0	0	CP11 (0)	CP10 (0)	CP9 (0)	CP8 (0)	CP7 (0)	CP6 (0)	0	0	CP5 (0)	CP4 (0)	CP3 (0)	CP2 (0)	CP1 (0)	CP0 (0)
R05h	Compare register (2)	0	1	0	0	0	0	0	0	0	0	0	0	CP17 (0)	CP16 (0)	CP15 (0)	CP14 (0)	CP13 (0)	CP12 (0)
R06h																			
R07h	Display control(1)	0	1	0	0	0	PT1 (0)	PT0 (0)	VLE2 (0)	VLE1 (0)	SPT (0)	0	0	GON (0)	DTE (0)	CL (0)	REV (0)	D1 (0)	D0 (0)
R08h	Display control(2)	0	1	0	0	0	0	FP3 (1)	FP2 (0)	FP1 (0)	FP0 (0)	0	0	0	0	BP3 (1)	BP2 (0)	BP1 (0)	BP0 (0)
R09h	Display control(3)	0	1	0	0	0	0	0	0	0	0	0	0	PTG 1(0)	PTG 0(0)	ISC3 (0)	ISC2 (0)	ISC1 (0)	ISC0 (0)
R0Ah																			
R0Bh	Frame cycle control	0	1	NO1 (0)	NO0 (0)	SDT1 (0)	SDT0 (0)	EQ1 (0)	EQ0 (0)	DIV1 (0)	DIV0 (0)	0	0	0	0	RTN3 (0)	RTN2 (0)	RTN1 (0)	RTN0 (0)
R0Ch	Extemal Display control	0	1	0	0	0	0	0	0	0	RM (0)	0	0	DM1 (0)	DM0 (0)	0	0	RIM1 (0)	RIM0 (0)
R10h	Power control (1)	0	1	0	SAP2 (0)	SAP1 (0)	SAP0 (0)	0	BT2 (0)	BT1 (0)	BT0 (0)	0	AP2 (0)	AP1 (0)	AP0 (0)	0	DK (1)	SLP (0)	STB (0)
R11h	Power control (2)	0	1	0	0	0	0	0	DC12 (0)	DC11 (0)	DC10 (0)	0	DC02 (0)	DC01 (0)	DC00 (0)	0	VC2 (0)	VC1 (0)	VC0 (0)
R12h	Power control (3)	0	1	0	0	0	0	0	0	0	0	0	0	0	PON (0)	VRH 3(0)	VRH 2(0)	VRH 1(0)	VRH 0(0)
R13h	Power control (4)	0	1	0	0	VCO MG	VDV 4(0)	VDV 3(0)	VDV 2(0)	VDV 1(0)	VDV 0(0)	0	0	0	VCM 4(0)	VCM 3(0)	VCM 2(0)	VCM 1(0)	VCM 0(0)
R21h	Vertical scroll control	0	1	AD15 (0)	AD14 (0)	AD13 (0)	AD12 (0)	AD11 (0)	AD10 (0)	AD9 (0)	AD8 (0)	AD7 (0)	AD6 (0)	AD5 (0)	AD4 (0)	AD3 (0)	AD2 (0)	AD1 (0)	AD0 (0)
R22H	RAM data write/ read	0	1		V	/rite/ F	Read	Data	(Uppe	r)			٧	Vrite/ I	Read	Data (Lower	-)	
R23h	RAM Write data Mask(1)	0	1	0	0	WM1 1(0)	WM1 0(0)	WM9 (0)	WM8 (0)	WM7 (0)	WM6 (0)	0)	0	WM5 (0)	WM4 (0)	WM3 (0)	WM2 (0)	WM1 (0)	WM0 (0)
R24h	RAM Write data Mask(2)	0	1	0	0	0	0	0	0	0	0	0	0	WM1 7(0)	WM1 6(0)	WM1 5(0)	WM1 4(0)	WM1 3(0)	WM1 2(0)

: Setting disable

Reg.	Register	R/W	RS				Upper	Code)						Lower	Code)		
No.	Register	IN/VV	KS	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
R30h	γ Control(1)	0	1	0	0	0	0	0	PKP1 2(0)	PKP1 1(0)	PKP1 0(0)	0	0	0	0	0	PKP0 2(0)	PKP0 1(0)	PKP0 0(0)
R31H	γ Control(2)	0	1	0	0	0	0	0	PKP3 2(0)	PKP3 1(0)	PKP3 0(0)	0	0	0	0	0	PKP2 2(0)	PKP2 1(0)	PKP2 0(0)
R32h	γ Control(3)	0	1	0	0	0	0	0	PKP4 2(0)	PKP4 1(0)	PKP4 0(0)	0	0	0	0	0	PKP4 2(0)	PKP4 1(0)	PKP4 0(0)
R33h	γ Control(4)	0	1	0	0	0	0	0	PRP 12(0)	PRP1 1(0)	PRP 10(0)	0	0	0	0	0	PRP 02(0)	PRP 01(0)	PRP 00(0)
R34h	γ Control(5)	0	1	0	0	0	0	0	PKN 12(0)	PKN1 1(0)	PKN 10(0)	0	0	0	0	0	PKN 02(0)	PKN 01(0)	PKN 00(0)
R35h	γ Control(6)	0	1	0	0	0	0	0	PKN 32(0)	PKN 31(0)	PKN 30(0)	0	0	0	0	0	PKN 22(0)	PKN 21(0)	PKN 20(0)
R36h	γ Control(7)	0	1	0	0	0	0	0	PKN 52(0)	PKN 51(0)	PKN 50(0)	0	0	0	0	0	PKN 42(0)	PKN 41(0)	PKN 40(0)
R37h	γ Control (8)	0	1	0	0	0	0	0	PRN 12(0)	PRN1 1(0)	PRN 10(0)	0	0	0	0	0	PRN 02(0)	PRN 01(0)	PRN 00(0)
R38h	γ Control (9)	0	1				VRP 14(0)	VRP 13(0)	VRP 12(0)	VRP1 1(0)	VRP 10(0)					VRP 03(0)	VRP 02(0)	VRP 01(0)	VRP 00(0)
R39h	γ Control (10)	0	1				VRN 14(0)	VRN 13(0)	VRN 12(0)	VRN1 1(0)	VRN 10(0)					VRN 03(0)	VRN 02(0)	VRN 01(0)	VRN 00(0)
R40h	Gate Scan Start Position	0	1	0	0	0	0	0	PRP 12(0)	PRP1 1(0)	PRP 10(0)	0	0	0	0	0	PRP 02(0)	PRP 01(0)	PRP 00(0)
R41h	Vertical Scroll Control	0	1	0	0	0	0	0	0	0	0	VL7 (0)	VL6 (0)	VL5 (0)	VL4 (0)	VL3 (0)	VL2 (0)	VL1 (0)	VL0 (0)
R42h	First Screen Driving position	0	1	SE17 (0)	SE16 (0)	SE15 (0)	SE14 (0)	SE13 (0)	SE12 (0)	SE11 (0)	SE10 (0)	SS17 (0)	SS16 (0)	SS15 (0)	SS14 (0)	SS13 (0)	SS12 (0)	SS11 (0)	SS10 (0)
R43h	Second Screen Driving Position	0	1	SE27 (0)	SE26 (0)	SE25 (0)	SE24 (0)	SE23 (0)	SE22 (0)	SE21 (0)	SE20 (0)	SS27 (0)	SS26 (0)	SS25 (0)	SS24 (0)	SS23 (0)	SS22 (0)	SS21 (0)	SS20 (0)
R44h	Horizontal RAM Address Position	0	1	HEA 7(0)	HEA 6(0)	HEA 5(0)	HEA 4(0)	HEA 3(0)	HEA 2(0)	HEA 1(0)	HEA 0(0)	HAS 7(0)	HAS 6(0)	HAS 5(0)	HAS 4(0)	HAS 3(0)	HAS 2(0)	HAS 1(0)	HAS 0(0)
R45h	Vertical RAM Address Position	0	1	VEA7 (0)	VEA6 (0)	VEA5 (0)	VEA4 (0)	VEA3 (0)	VEA2 (0)	VEA1 (0)	VEA0 (0)	VAS 7(0)	VAS 6(0)	VAS 5(0)	VAS 4(0)	VAS 3(0)	VAS 2(0)	VAS 1(0)	VAS 0(0)

: Setting disable

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

7.4 Instruction Explanation

				Input Parts
Signals	I/O	Pin Number	Connected with	Description
IM3-1, IM0	ı	4	VSSD/ IOVcc	Select the MPU interface mode as listed below IMO(ID) IM1 IM2 IM3 MPU interface mode DB pins
NCS	ı	1	MPU	like the ID setting for the device code in transfer data. Chip select signal. Low: chip can be accessed; High: chip cannot be accessed. Must be connected to VSSD if not in use.
VLD		1	MPU	Fix to VSSD
RS	1	1	MPU	The signal for register index or register command select. Low: Register index or internal status (in read operation); High: Register command. Connect to IOVcc or VSSD level when serial data transfer interface is selected.
E_NWR	ı	1	MPU	Serves as a write signal and writes data at the rising edge in i80 system interface. Serves as the synchronous clock signal in serial data transfer interface.
RW_NRD	ı	1	MPU	Low: Write: High: Read) Serves as a read signal and reads data at the low level in i80 system interface. Fix it to IOVcc or VSSD level when using serial data transfer interface.
ENABLE	1	1	MPU	A data ENABLE signal in RGB I/F mode. Fix the unused pin to either the VSSD level or the IOVcc level. Low: Selected (access enabled) The polarity of the ENABLE signal is inverted by the EPL bit. EPL
VSYNC	ı	1	MPU	Frame's ynchronizing signal. Fix to the IOVcc level when not used. If VSPL=0: Active low. If VSPL=1: Active high.
HSYNC	ı	1	MPU	Frame synchronizing signal. Fix to the IOVcc level when not used. If HSPL=0: Active low. If HSPL=1: Active high.
DOTCLK	ı	1	MPU	Dot clock signal. Fix to the IOVcc level when not used. If DPL=0: Data are input on the rising edge of DOTCLK. If DPL=1: Data are input on the falling edge of DOTCLK.
PD0~17	ı	18	MPU	An 18-bit bus RGB data bus in 80-system interface mode. Fix the unused pins to either the VSSD level or the IOVcc level. 6-bit bus: use PD17-PD12 16-bit bus: use PD17-PD13 and PD11-PD1 18-bit bus: use PD17-PD0

				Input Parts
Signals	1/0	Pin Number	Connected with	Description
NRESET	I	1	MPU or reset circuit	Reset pin. Setting either pin low initializes the LSI. Must be reset after power is supplied.
VcomR	ı	1	Variable Resistor or open	A VoomH reference voltage. When adjusting VoomH externally, set registers to halt the VoomH internal adjusting circuit and place a variable resistor between VGAM1OUT and VSSD. Otherwise, leave this pin open and adjust VoomH by setting the internal register of the HX8306A.
Vci1	Ι	1	VciOUT	A reference voltage for the step-up circuit1. Connect to an external power supply of 2.75V of less when not using an internal reference voltage.
VLCD	_	1	VLCDC	A power supply for the source driver outputs. A reference voltage for the step-up circuit2
VGH	_	1	VGHC	A power supply for the TFT LCD's gate driver. Connect to VGHC.
VGL	_	1	VGLC	A power supply for the TFT LCD's gate driver. Connect to VGLC.
VCL	_	1	VCLC	A power supply for the VoomL level. Connect to VCLC.
TEST1		1	VSSD	A test pin. Make sure to fix it to the VSSD level.
TEST2		1	VSSD	A test pin. Make sure to fix it to the VSSD level.
VGS	I	1	VSSD or external resistor	Connect to a variable resistor to adjusting internal gamma reference voltage for matching the characteristic of different panel used.
Vci	Ι	1	Power supply	For analog power supply. Connect to an external power supply 2.5V~3.3V.
VciLVL	I	1	Power Supply	Generates a reference voltage (VciOUT, REGP) from the VciLVL level according to the ratio determined by the VC2-0 BITS. Connect to Vci on the FPC.

				Input/Output Part
Signals	I/O	Pin Number	Connected with	Description
C11A,C11B	I/O	2	Step-up Capacitor	Connect to the step-up capacitors according to the step-up factor. Leave this pin open if the internal step-up circuit is not used.
C21A,C21B C22A,C22B	I/O	6	Step-up Capacitor	Connect these pins to the capacitors for the step-up circuit 2. According to the step-up rate. When not using the step-up circuit2, disconnect them.
OSC1,OSC2	I/O	2	Oscillation Resistor	Connect an external resistor for generating internal clock by internal R-C oscillation. Or an external clock signal is supplied through OSC1 with OSC2 open.
DB0_S DI	I/O	1	MPU	Operates liked an 18-bit bi-directional data bus. 8-bits bus I/F: DB17-10 9-bits bus I/F: DB17-9 16-bits bus I/F: DB17-10, 8-1 18-bits bus I/F: DB17-0 Connected unused pins to the IOVcc or VSSD level. When Serial Data Input pin in Serial Data Transfer interface. The input data is latched by the rising edge of the SCL signal on the chip.
DB1_SDO	I/O	1	MPU	Operates liked an 18-bit bi-directional data bus. 8-bits bus I/F: DB17-10 9-bits bus I/F: DB17-9 16-bits bus I/F: DB17-10, 8-1 18-bits bus I/F: DB17-0 Connected unused pins to the IOVcc or VSSD level. When Serial Data Output pin in Serial Data Transfer interface. The data is output by the falling edge of the SCL signal on the chip.
DB2~17	I/O	16	MPU	Operates liked a 18-bit bi-directional data bus 8-bit bus: use DB8-DB1 9-bit bus: use DB8-DB0 16-bit bus: use DB17-DB10 and DB8-DB1 18-bit bus: use DB17-DB0 Connected unused pins to the IOVcc or VSSD level.
REGP	I/O	1	Test pin	A test pin for VGAM1OUT. Disconnect it.
VGAM1OUT	I/O	1	Stabilizing capacitor or power supply	A reference voltage for VGAM2 between VSSD and VLCD from the reference voltage between Vci and VSSD that is generated internally. VGAM1OUT serves as a source driver grayscale reference voltage VGAM2, a VcomH level reference voltage, and a Vcom amplitude reference voltage. Connect to a stabilizing capacitor. VGAM1OUT = 3.0 ~ (VLCD – 0.5)V
VTESTS	I/O	1	Open	A test pin. Disconnect it.
TVCOMHI	I/O	1	Open	A test pin for VcomH. Disconnect it.
TVCOMLI	I/O	1	Open	A test pin for VcomL. Disconnect it.
TVMAG	I/O	1	Open	A test pin for VcomL. Disconnect it.
TESTO1~4	-	4	-	Dummy pads. Disconnect them.
DUMMY1,2,13	-	3	-	Dummy pads. Disconnect them.
DUMMY3-12,14- 19	-	16	-	Dummy pads. Can be connected to the wiring to the COG panel.
DUMMYR1-9	-	9	-	Dummy pads. Available for measuring the COG contact resistance. DUMMYR1 and DUMMYR2 are short-circuited within the chip. DUMMYR3, DUMMYR4 and DUMMYR5 are short-circuited within the chip. DUMMYR6, DUMMYR7, DUMMYR8, and DUMMYR9 are short circuited within the chip.
VGLDUM1~4	-	4	-	Outputs the internal VGL level. Use as dummy gate output pins.

				Input/Output Part
Signals	I/O	Pin Number	Connected with	Description
C11A,C11B	I/O	2	Step-up Capacitor	Connect to the step-up capacitors according to the step-up factor. Leave this pin open if the internal step-up circuit is not used.
C21A,C21B C22A,C22B	I/O	6	Step-up Capacitor	Connect these pins to the capacitors for the step-up circuit 2. According to the step-up rate. When not using the step-up circuit2, disconnect them.
OSC1,OSC2	I/O	2	Oscillation Resistor	Connect an external resistor for generating internal clock by internal R-C oscillation. Or an external clock signal is supplied through OSC1 with OSC2 open.
DB0_S DI	I/O	1	MPU	Operates liked an 18-bit bi-directional data bus. 8-bits bus I/F: DB17-10 9-bits bus I/F: DB17-9 16-bits bus I/F: DB17-10, 8-1 18-bits bus I/F: DB17-0 Connected unused pins to the IOVcc or VSSD level. When Serial Data Input pin in Serial Data Transfer interface. The input data is latched by the rising edge of the SCL signal on the chip.
DB1_SDO	I/O	1	MPU	Operates liked an 18-bit bi-directional data bus. 8-bits bus I/F: DB17-10 9-bits bus I/F: DB17-9 16-bits bus I/F: DB17-10, 8-1 18-bits bus I/F: DB17-0 Connected unused pins to the IOVcc or VSSD level. When Serial Data Output pin in Serial Data Transfer interface. The data is output by the falling edge of the SCL signal on the chip.
DB2~17	I/O	16	MPU	Operates liked a 18-bit bi-directional data bus 8-bit bus: use DB8-DB1 9-bit bus: use DB8-DB0 16-bit bus: use DB17-DB10 and DB8-DB1 18-bit bus: use DB17-DB0 Connected unused pins to the IOVcc or VSSD level.
REGP	I/O	1	Test pin	A test pin for VGAM1OUT. Disconnect it.
VGAM1OUT	I/O	1	Stabilizing capacitor or power supply	A reference voltage for VGAM2 between VSSD and VLCD from the reference voltage between Vci and VSSD that is generated internally. VGAM1OUT serves as a source driver grayscale reference voltage VGAM2, a VcomH level reference voltage, and a Vcom amplitude reference voltage. Connect to a stabilizing capacitor. VGAM1OUT = $3.0 \sim (\text{VLCD} - 0.5)\text{V}$
VTESTS	I/O	1	Open	A test pin. Disconnect it.
TVCOMHI	1/0	1	Open	A test pin for VcomH. Disconnect it.
TVCOMLI	I/O	1	Open	A test pin for VcomL. Disconnect it.
TVMAG	I/O	1	Open	A test pin for VcomL. Disconnect it.
TESTO1~4	-	4	-	Dummy pads. Disconnect them.
DUMMY1,2,13	-	3	-	Dummy pads. Disconnect them.
DUMMY3-12,14- 19	-	16	-	Dummy pads. Can be connected to the wiring to the COG panel.
DUMMYR1-9	-	9	-	Dummy pads. Available for measuring the COG contact resistance. DUMMYR1 and DUMMYR2 are short-circuited within the chip. DUMMYR3, DUMMYR4 and DUMMYR5 are short-circuited within the chip. DUMMYR6, DUMMYR7, DUMMYR8, and DUMMYR9 are short circuited within the chip.
VGLDUM1~4	-	4	-	Outputs the internal VGL level. Use as dummy gate output pins.

				Power Part
Signals	I/O	Pin Number	Connected with	Description
Vcc	-	1	Power supply	A power supply for the internal logic. VCC = 2.4 ~ 3.3V
IOVcc	-	1	Power supply	Power supply for internal core logic when VDC is disabled. Voltage range: 1.65 ~ 3.3V if VDC is disabled. Tie together with VCC if VDC is enabled.
VSSA	-	1	Power supply	Analogy ground. VSSA = 0V. When using the COG method, connect to VSSD on the FPC to prevent noise.
VSSD	-	1	Power supply	Ground for the internal RAM. VSSD = 0V. When using the COG method, connect to VSSD on the FPC to prevent noise.
V0P,V61P	I or O	2	Stabilizing capacitor	Outputs from the internal positive polarity operational amplifier when it is on (when SAP2-0 = "001", "010", "011", "100", and "101"). Connect to a capacitor to stabilize the amplifier.
V0N,V61N	I or O	2	Stabilizing capacitor	Outputs from the internal negative polarity operational amplifier when it is on (when SAP2-0 = "001", "010", "011", "100", and "101"). Connect to a capacitor to stabilize the amplifier

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

7.5 Reset Function

If the /RESET input becomes L or the reset command is input, the internal timing generator is initialized. Must be reset after the power is supplied. The time required for the /RESET input is at least 1ms. When the power supply is reset while the power supply is ON, wait at least 10ms after the power has been supplied until the RC oscillation frequency become stabilized. While waiting, do not make initial settings for the instruction set, nor access to the GRAM.

Register	Initial State of Instructions
Start oscillation	Executed
Driver output control	NL4-0="10101", SS="0", CS="0"
LCD driving AC control	FLD1-0="01", B/C="0", EOR=0, NW5-0="00000"
Dower control (4)	BT2-0="000", DC2-0="000", AP2-0="000" : LCD power off,
Power control (1)	SLP="0", STB="0" : Standby mode off
Power control (2)	CAD="0", VRN4-0="00000", VRL-4="00000"
Power control (3)	VC2-0="000"
Power control (4)	VRL3-0="0000", PON="0", VRH-3="0000"
Power control (5)	VCOMG="0", VDV4-0="00000", VCM4-0="00000"
Entry mode set	HWM="0", I/D-0="11" : Increment by 1,
Entry mode set	AM="0" : Horizontal move, LG2-0="0" : Replace mode
Compare register	CP17-0:00000h
Display control	PT1-0="00", VLE2-1="00" : No vertical scroll, SPT="0", GON="0", DTE="0", CL="0" :262,144-color mode, REV="0", D1-0="000" : Display off
Frame cycle control	GD1-0="00", SDT1-0="00", CE1-0="00": No equalization, DIV1-0="00": 1 divided clock, RTN3-0="0000": 16 clock in 1H period
Gate scan starting position	SCN4-0="00000"
Vertical scroll	VC7-0="0000 0000"
1 st screen division	SE17-10="1111 1111", SS17-10= "0000 0000"
2 nd screen division	SE27-20="1111 1111", SS27-20="0000 0000"
Horizontal RAM address position	HEA7-0="1000 0011", HSA7-0="0000 0000"

Register	Initial State of Instructions
Vertical RAM address position	VEA7-0="1010 1111", VSA7-0="0000 0000"
RAM write data mask	WM15-0="0000H" : No mask
RAM address set	AD15-0= "0000H"
Gamma control	MP02-00="000", MP12-10="000",MP22-20="000", MP32-30="000" MP42-40="000", MP52-50="000", MP02-00="000", MP12-10="000" MN02-00="000", MN12-10="000", MN22-20="000", MN32-30="000" MN42-40="000", MN52-50="000", CN02-00="000", CN12-10="000" OP14-10="00000", OP02-00="0000", ON14-10="00000", ON03-00="000"

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

8 Timing Characteristics

9.1Timing Characteristics

Read / Write Characteristics (8080-series MPU)

Bus Timing Characteristics

<<Normal Write Mode(HWM=0),loVcc=1.65V-2.4V>>

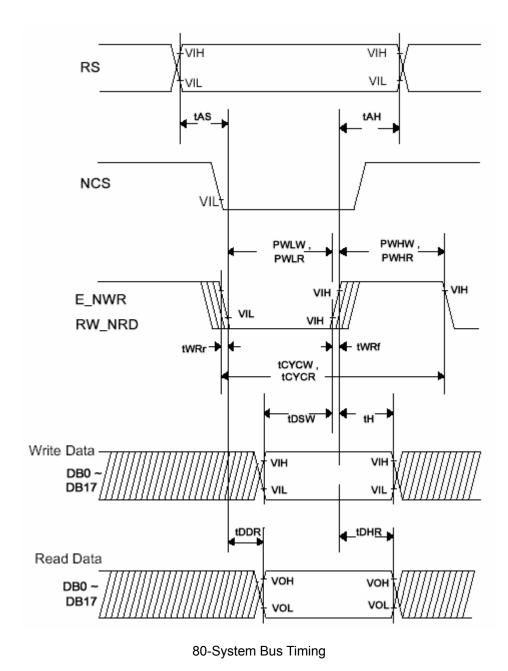
	Item	,	Symbol	Unit	Min	Тур	Max
Bus cycle time		Write	tCYCW	ns	250	-	
Bus Cycle time	;	Read	tCYCR	ns	500	-	
Write low-leve	l pulse width		PWLW	ns	100	-	-
Read low-leve	I pulse width		PWLR	ns	250	-	-
Write high-leve	el pulse width		PWHW	ns	110	-	-
Read high-leve	Read high-level pulse width		PWHR	ns	200	-	-
Write/Read ris	e/fall time		tWRr,WRf	ns		-	25
Set up time	(RS to NCS,E	_NWR)	tAS	ns	0	-	
Set up time	(RS toNCS,RE	_NRD)	iAS	ns	10	-	-
Address hold t	ime		tAH	ns	2	-	-
Write data set	up time		tDSW	ns	25	-	-
Write data hold time		tH	ns	10	-	-	
Read data delay time			tDDR	ns		-	200
Read data hole	d time		tDHR	ns	10	-	-

<<High-Speed Write Mode(HWM=1),Vcc1.8V-2.4V>>

Item		Symbol	Unit	Min	Тур	Max
Pue avale time	Write	tCYCW	ns	100	-	
Bus cycle time	Read	tCYCR	ns	500	-	
Write low-level pulse width		PWLW	ns	30	-	-
Read low-level pulse width		PWLR	ns	250	-	-
Write high-level pulse width		PWHW	ns	40	-	-
Read high-level pulse width	Read high-level pulse width		ns	200	-	-
Write/Read rise/fall time		tWRr,WRf	ns	ı	-	25
Set up time (RS to CS*	,WR*)	tAS	ns	0	-	
(RS to RD*	·)	1/3	ns	10	-	-
Address hold time		tAH	ns	2	-	-
Write data set up time	tDSW	ns	25	-	-	
Write data hold time	tH	ns	10	-	-	
Read data delay time	tDDR	ns	ı	-	200	
Read data hold time		tDHR	ns	10	-	-

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

<<Normal Write Mode(HWM=0),loVcc = 2.4V-3.3V>>

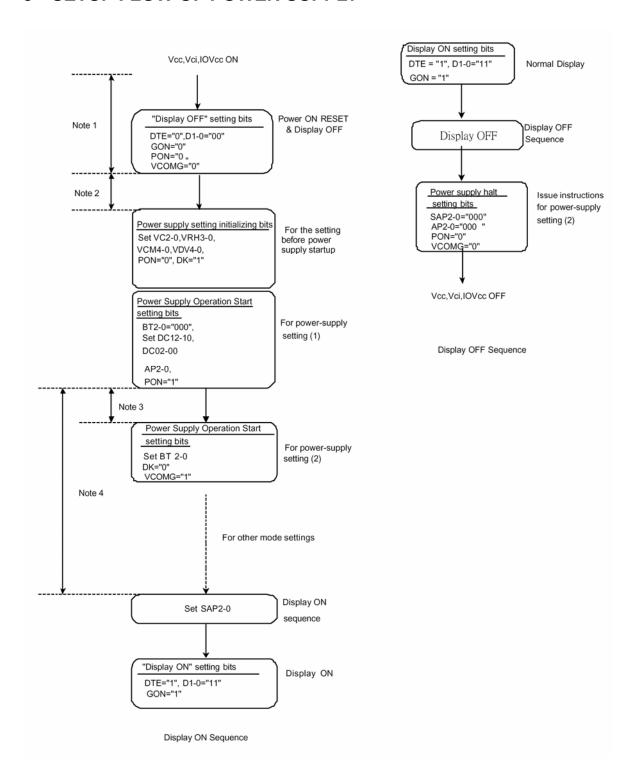

	Item	,	Symbol	Unit	Min	Тур	Max
Bus cycle time		Write	tCYCW	ns	100	-	
bus cycle time	;	Read	tCYCR	ns	500	-	
Write low-leve	l pulse width		PWLW	ns	40	-	-
Read low-leve	I pulse width		PWLR	ns	250	-	-
Write high-leve	el pulse width		PWHW	ns	30	-	-
Read high-leve	el pulse width		PWHR	ns	200	-	-
Write/Read ris	e/fall time		tWRr,WRf	ns	-	-	25
Set up time	(RS to NCS,E	_NWR)	tAS	ns	0	-	
Set up time	(RS toNCS,RE	E_NRD)	iAS	ns	10	-	-
Address hold t	ime		tAH	ns	2	-	-
Write data set up time			tDSW	ns	25	-	-
Write data hold time			tH	ns	10	-	-
Read data delay time			tDDR	ns	-	-	200
Read data hole	d time		tDHR	ns	10	-	-

<<High-Speed Write Mode(HWM=1),Vcc = 2.4V-3.3V >>

Ite	em		Symbol	Unit	Min	Тур	Max
Pue evele time		Write	tCYCW	ns	100	-	
Bus cycle time		Read	tCYCR	ns	500	-	
Write low-level puls	se width		PWLW	ns	40	-	-
Read low-level puls	se width		PWLR	ns	250	-	-
Write high-level pul	lse width		PWHW	ns	30	-	-
Read high-level pul	Read high-level pulse width		PWHR	ns	200	-	-
Write/Read rise/fall	Write/Read rise/fall time		tWRr,WRf	ns	1	-	25
Set up time	Cot up time (RS to CS*		tAS	ns	0	-	-
Set up time	(RS to RD*	·)	iAS	ns	10	-	-
Address hold time			tAH	ns	2	-	-
Write data set up time		Write data set up time		ns	25	-	-
Write data hold time		Vrite data hold time		ns	10	-	-
Read data delay time		tDDR	ns	-	-	200	
Read data hold tim	е		tDHR	ns	10	-	-

Reset Timing Characteristics

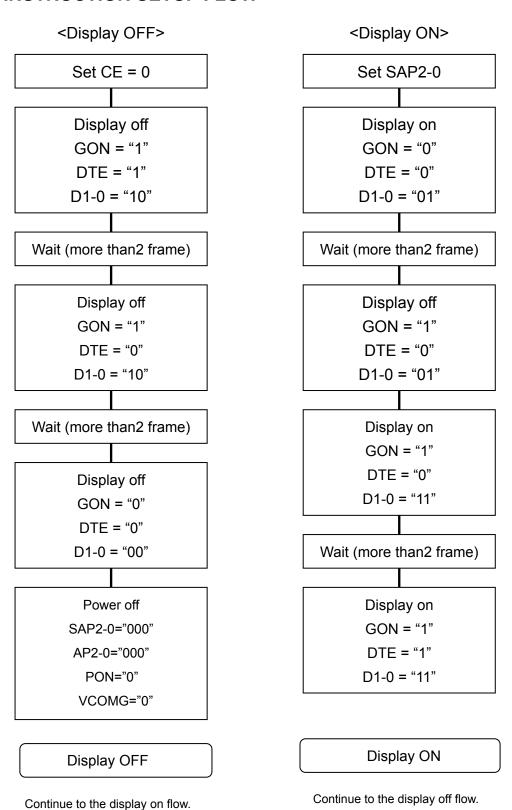
Item	Symbol	Unit	Min	Тур	Max
Reset"low"level width	tRES	ms	(1)	-	-
Reset rise time	trRES	us	-	-	(10)

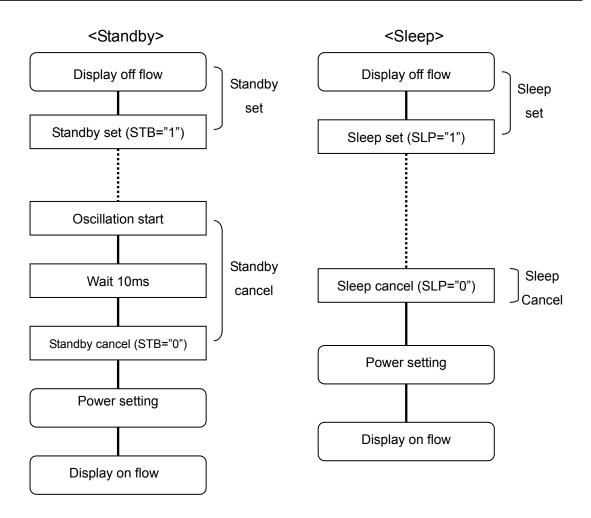


Note 1) PWEL is specified during the overlap period. (SC*="Low", WR* or RD*="Low")

Note 2) When using 16-bit bus interface, parallel data can be transferred through DB17-10 pin and DB8-1 and DB0 must be fixed to "Vcc" or "GND".

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD


9 SETUP FLOW OF POWER SUPPLY



Date: 2006/12/27

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

10 INSTRUCTION SETUP FLOW

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

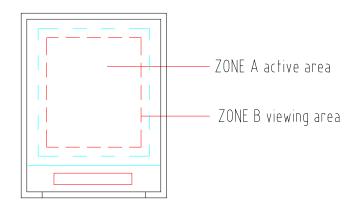
11 QUALITY AND RELIABILITY

11.1 TEST CONDITIONS

Tests should be conducted under the following conditions:

Ambient temperature : $25 \pm 5^{\circ}$ C Humidity : $60 \pm 25\%$ RH.

11.2 SAMPLING PLAN


Sampling method shall be in accordance with MIL-STD-105E , level II, normal single sampling plan .

11.3 ACCEPTABLE QUALITY LEVEL

A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation.

11.4 APPEARANCE

An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under flourescent light. The inspection area of LCD panel shall be within the range of following limits.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

11.5 INSPECTION QUALITY CRITERIA

No.	Item	Criterion for defects			Defect type
1	Non display	No non display is allowed			Major
2	Irregular operation	No irregular operation is allowed			Major
3	Short	No short are allowed			Major
4	Open	Any segments or comm are rejectable.	on patte	rns that don't activate	Major
5	Black/White spot (I)	Size D (mm) $D \le 0.15$ $0.15 < D \le 0.20$ $0.20 < D \le 0.30$ $0.30 < D$	D < 0.15 0.15 < D < 0.20 0.20 < D < 0.30		Minor
6	Black/White line (I)			Acceptable number 5 3 2 1	Minor
7	Black/White sport (II)	Size D (mm) A $D \le 0.30$ $0.30 < D \le 0.50$ $0.50 < D \le 1.20$ $1.20 < D$		ceptable number Ignore 5 3	Minor
8	Black/White line (II)	$ \begin{array}{ c c c c c } \hline Length \ (mm) & Width \ (mm) \\ \hline 20 < L & 0.05 < W \le 0.07 \\ 10 < L \le 20 & 0.07 < W \le 0.09 \\ 5.0 < L \le 10 & 0.09 < W \le 0.10 \\ L \le 5.0 & 0.10 < W \le 0.15 \\ \hline \end{array} $		Acceptable number 5 3 2 1	Minor
9	Back Light	No Lighting is rejectable Flickering and abnormal lighting are rejectable			Major

10	Display pattern	$\frac{A+B}{2} \le 0.30$ Note: 1. Accep 2. NG if	0 < C	damages		$\frac{F+G}{2} \le 0.25$ es per dot	Minor
11	Blemish & Foreign matters Size: $D = \frac{A+B}{2}$	Size D (r D ≤ 0.15 0.15 < D ≤ 0.20 0.20 < D ≤ 0.30 0.30 < D	;)	Ac		able number gnore 3 2 0	Minor
12	Scratch on Polarizer	Width (mm) W≤0.03 0.03 <w≤0.05 0.05<w≤0.08="" 0.08<w="" note(1)="" regard<="" td=""><td>Length Igno L < 2 L > 2 L > 1 L < 1 Note as a blemis</td><td>re .0 .0 .0 .0 .0</td><td>Acc</td><td>eptable number Ignore Ignore 1 1 Ignore Note(1)</td><td>Minor</td></w≤0.05>	Length Igno L < 2 L > 2 L > 1 L < 1 Note as a blemis	re .0 .0 .0 .0 .0	Acc	eptable number Ignore Ignore 1 1 Ignore Note(1)	Minor
13	Bubble in polarizer	Size D (mm) D < 0.20 0.20 < D < 0.50 0.50 < D < 0.80 0.80 < D		Acceptable number Ignore 3 2 0		Minor	
14	Stains on LCD panel surface	Stains that cannot be removed even when wiped lightly with a soft cloth or similar cleaning too are rejectable.			/ Minor		
15	Rust in Bezel	Rust which is visible in the bezel is rejectable.			Minor		
16	Defect of land surface contact (poor soldering)	Evident crevices which is visible are rejectable.				Minor	
17	Parts mounting	 Failure to mount parts Parts not in the specifications are mounted Polarity, for example, is reversed 			Major Major Major		

18	Parts alignment	 LSI, IC lead width is more than 50% beyond pad outline. Chip component is off center and more than 50% of the leads is off the pad outline. 	
19	Conductive foreign matter (Solder ball, Solder chips)	 1. 0.45< φ ,N≥1 2. 0.30< φ ≤0.45 ,N≥1 φ:Average diameter of solder ball (unit: mm) 3. 0.50<l ,n≥1<="" li=""> L: Average length of solder chip (unit: mm) </l>	Major Minor Minor
20	Faulty PCB correction	 Due to PCB copper foil pattern burnout, the pattern is connected, using a jumper wire for repair; 2 or more places are corrected per PCB. Short circuited part is cut, and no resist coating has been performed. 	Minor Minor

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

11.6 RELIABILITY

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=96 hrs	
Low Temperature Operation	-20±3°C , t=96 hrs	
High Temperature Storage	80±3°C , t=96 hrs	1,2
Low Temperature Storage	-30±3°C , t=96 hrs	1,2
Humidity Test	40°C , Humidity 90%, 96 hrs	1,2
Thermal Shock Test	-30°C ~ 25°C ~ 80°C 0.5hr. 5min. 0.5 hr. (1 cycle) Total 5cycle	1,2
Vibration Test (Packing)	Sweep frequency: 10~55~10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2
Static Electricity	150pF 330 ohm <u>+</u> 8kV, 10times air discharge	

Note 1: Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions

(15-35°C, 45-65%RH).

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

12 USE PRECAUTIONS

12.1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

12.2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

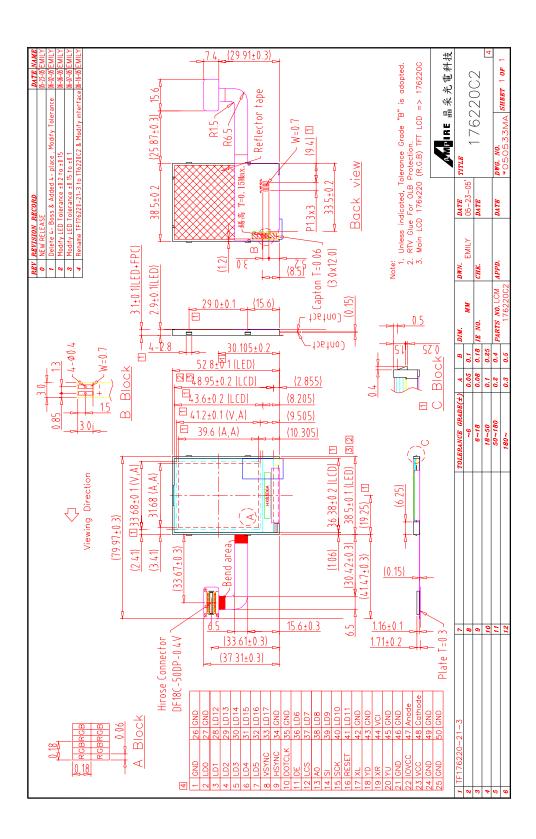
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

12.3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

12.4 Operating precautions

- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to


The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMPIRE CO., LTD

- light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

12.5Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.

13 Mechanic Drawing

