

AMP DISPLAY INC.

SPECIFICATIONS

2.0-in COLOR TFT MODULE

CUSTOMER:	
CUSTOMER PART NO.	
AMP DISPLAY PART NO.	AM-176220JTNQW-00H
APPROVED BY:	
DATE:	
	ROVED FOR SPECIFICATIONS ROVED FOR SPECIFICATION AND PROTOTYPES

AMP DISPLAY INC

9856 SIXTH STREET RANCHO CUCAMONGA CA 91730 TEL: 909-980-13410 FAX: 909-980-1419 WWW.AMPDISPLAY.COM

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2005/12/23	-	New Release	Emil
2006/2/9	-	Change Part No. from TF-176220-35-0 to AM-176220JTNQW-00H Revised All T.B.D data.	Eric Eric
2006/2/20	12-15	Interface support 8/9/16/18-bit MPU Interface.	Eric
2006/3/10	3,37	Change LCD viewing direction to 12H.	Eric
2006/12/7	7	Change LCD viewing angle.	John
	4	Change the shape dimensions	

1 Features

This single-display module is suitable for cell phone application. The Main-LCD adopts one backlight with High brightness 3-lamps white LED.

- (1) Construction: 2.0" a-Si color TFT-LCD, White LED Backlight, and FPCB.
- (2) Main LCD: 2.1 Amorphous-TFT 2.0 inch display, transmissive, Normally white type, 12 o'clock.
 - 2.2 176(RGB)X220 dots Matrix, 1/220 Duty.
 - 2.3 Narrow-contact ledge technique.
 - 2.4 Main LCD Driver IC: HX8309
 - 2.5 Real 262K colors display:

262K: Red-6bit, Green-6bit, Blue-6bit (9/18-bit interface)
Dithering 262K: Red-5bit, Green-6bit, Blue-5bit (8/16-bit interface)

- (3) Low cross talk by frame rate modulation
- (4) Direct data display with display RAM
- (5) Partial display function: You can save power by limiting the display space.
- (6) MPU interface: 8/9/16/18-bit 80-Series, parallel interface.
- (7) Abundant command functions:

Area scroll function

Display direction switching function

Power saving function

Electric volume control function: you are able to program the temperature compensation function.

2 Mechanical specifications

Dimensions and weight

	Item	Specifications	Unit
External	shape dimensions	*37.68(W) x 69.84(H) x3.14 (D) Max.	mm
Main	Pixel size	0.06 (W) x 0.18 (H)	mm
LCD	Active area	31.68 (W) x 39.6 (H)	mm
	Color filter area	31.68 (W) x 43.4 (H)	mm
	Weight	TBD	g

^{*1.} This specification is about External shape on shipment from AMPIRE.

3 Absolute max. ratings and environment

3-1 Absolute max. ratings

Ta=25°C GND=0V

Item	Symbol	Min.	Max.	Unit	Remarks
Power voltage	VDD – GND	-0.3	+3.3	V	
Power voltage	LED A – LED K	-0.5	+4.0	V	
Input voltage	VIN	-0.5	VDD	V	

3-2 Environment

Item	Specifications	Remarks
Storage temperature	Max. +70 °C Min20 °C	Note 1: Non-condensing
Operating temperature	Max. +60 °C Min10 °C	Note 1: Non-condensing

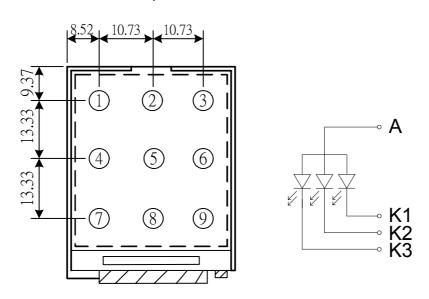
Note 1 : Ta≦+40 °C · · · Max.85%RH

Ta>+40 $^{\circ}$ C · · · The max. humidity should not exceed the humidity with 40 $^{\circ}$ C 85%RH.

4 Electrical specifications

4-1 Electrical characteristics of LCM

 $(V_{DD}=3.0V, Ta=25 \,{}^{\circ}C)$


Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IC power voltage	V_{DD}		2.4	3.0	3.3	V
High-level input voltage	V _{IHC}		0.8V _{DD}		V_{DD}	V
Low-level input voltage	V _{ILC}		0		0.2V _{DD}	V
Consumption current of VDD	I _{DD}	LED OFF	-	4	5	mA
Consumption current of LED	I _{LED_ON}	V _{LED_ON} =3.3V	-	45	55	mA

^{※ 1. 1/220} duty.

4-2 LED back light specification

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Forward voltage	V _f	I _f =45mA	3.2	3.3	4	V
Reverse voltage	V _r		-	-	12	V
Forward current	I _f	3-chip parallel	40	45	55	mA
Power Consumption	P_{BL}	I _f =45mA	-	162	-	mW
Uniformity (with L/G)	-	I _f =45mA	80%*1	-	-	
Bare LED Luminous intensity	V _f	3.3V 45mA	2400	-	-	cd/m ²
Luminous color			White	е		
Chip connection		3 chi	p parallel	connectio	n	

Bare LED measure position:

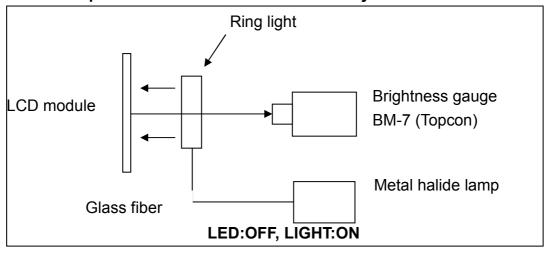
*1 Uniformity (LT):
$$\frac{Min(P1 \sim P9)}{Max(P1 \sim P9)} \times 100 \ge 80\%$$

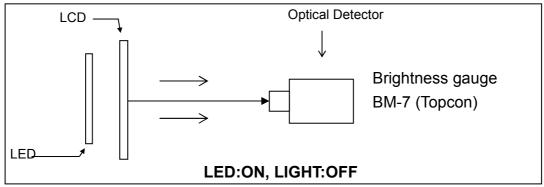
5 Optical characteristics

Main LCD

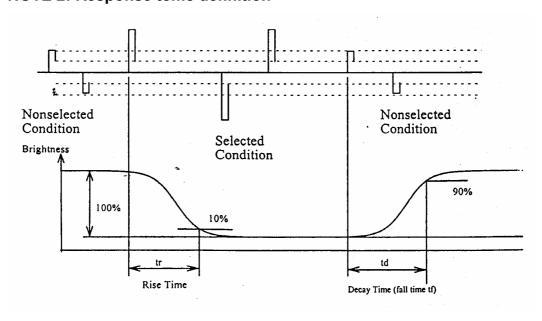
5.1 Optical characteristics

$(1/220 \text{ Duty in case except as specified elsewhere Ta = }25^{\circ}\text{C})$

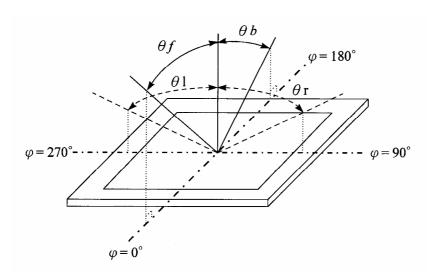

LED backlight transmissive module:

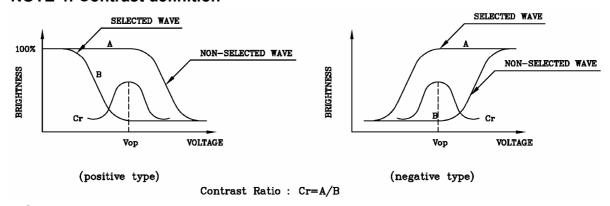

Item	Symbol	Temp.	Min.	Std.	Max.	Unit	Conditions
Response	Tr	25 °C	-	15	30	mo	θ =0 ° , φ =0 °
time	Tf	25 °C	ı	35	50	ms	(Note 2)
Contrast ratio	CR	25 °C	150	200	ı	-	θ =0°, φ =0° LED:ON, LIGHT:OFF (Note 4)
Transmittance	Т	25 °C	-	6	-	%	
Visual angle range front and rear	θ	25 °C		(<i>θ</i> f)15 (<i>θ</i> b) 35		De- gree	φ = 0°, CR \ge 10 LED:ON LIGHT:OFF (Note 3)
Visual angle range left and right	θ	25 °C		(<i>θ</i> I) 45 (<i>θ</i> r) 45		De- gree	φ =90°, CR \ge 10 LED:ON LIGHT:OFF (Note 3)
Visual angle direction priority				12:00			(Note 5)
Brightness				150		Cd/ m2	V _{LED} =3.3V, 45mA Full White pattern

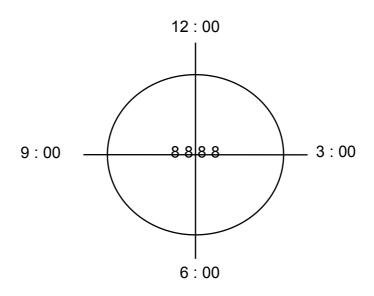
5.2 CIE (x, y) chromaticity (1/220 Duty Ta = 25° C)


Item	Symbol	Т	ransmissiv	е	Conditions
itom	Cymbol	Min.	Тур.	Max.	Odriditions
Red	Х	0.610	0.640	0.670	θ =0°, φ =0°
rteu	Υ	0.315	0.645	0.375	. ,
Green	Х	0.267	0.297	0.327	θ =0°, φ =0°
Giccii	Υ	0.554	0.584	0.614	•
Blue	X	0.101	0.131	0.161	θ =0°, φ =0°
Dide	Υ	0.120	0.142	0.172	• •
White	Х	0.283	0.313	0.343	θ =0°, φ =0°
VVIIILE	Υ	0.325	0.355	0.385	, ,

NOTE 1: Optical characteristic measurement system




NOTE 2: Response tome definition

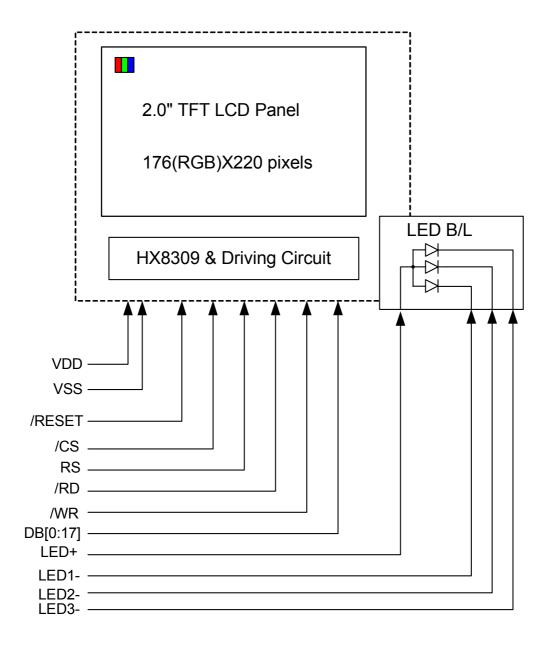

NOTE 3: $\varphi \cdot \theta$ definition

NOTE 4: Contrast definition

NOTE 5: Visual angle direction priority

Date: 2006/12/7 AMP DISPLAY

6 Block Diagram


Block diagram (Main LCD)

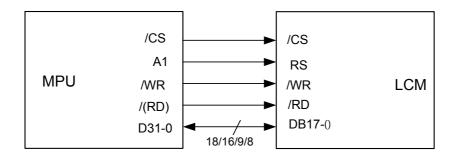
Display format: A-Si TFT transmissive, Normally white type, 12 o'clock.

Display composition: 176 x RGB x 220 dots

LCD Driver: HX8309

Back light: White LED x 3 (I_{LED} =45mA)

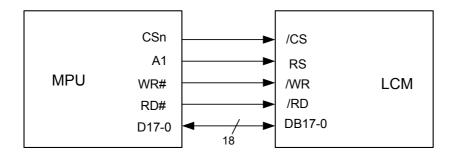
7 Interface specifications

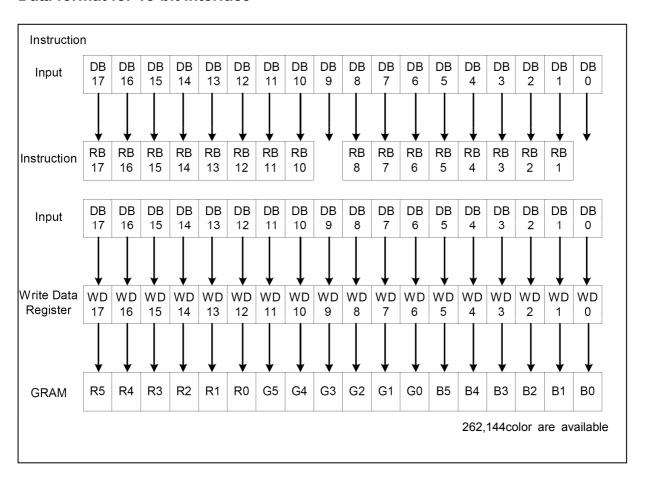

Pin No.	Terminal	Functions
1	DUMMY1	DUMMY PIN
2	GND1	GND-terminal for analog circuit.
3	VCC1	Power supply for the internal logic circuit. (VCC=2.2~3.3V)
		Chip select signal.
4	CS	Low: chip can be accessed;
		High: chip cannot be accessed. The signal for register index or register command select.
5	RS	Low: Register index or internal status (in read operation);
		High: Register command.
6	/WR	Write clock terminal, active "L" (80 series interface).
7	/RD	Read clock terminal, active "L" (80 series interface).
8	IM0	Select MPU Interface type (8/9/16 bits) by IM0 and IM3.
9	DB0	
10	DB1	NADIL interfece for 00 quatern input
11	DB2	MPU interface for 80-system input. 18-bits: Connection DB17-0
12	DB3	16-bits: Connection DB17-10 and DB8-1 pins.
13	DB4	·
14	DB5	
15	DB6	Unused size must be fixed to VDD or CND level
16	DB7	Unused pins must be fixed to VDD or GND level.
17	DB8	
18	IM3	Select MPU Interface type (8/9/16 bits) by IM0 and IM3.
19	DB9	
20	DB10	MPU interface for 80-system input.
21	DB11	18-bits: Connection DB17-0 16-bits: Connection DB17-10 and DB8-1 pins.
22	DB12	9-bits: Connection DB17-10 and DB0-1 pins.
23	DB13	8-bits: Connection DB17-10 pins.
24	DB14	
25	DB15	1
26	DB16	Unused pins must be fixed to VDD or GND level.
27	DB17	
28	RESET	LCD Reset terminal, active "L".
29	VC1	Power supply for Step-up circuit. (VCi=2.5~3.3V)
30	VCC2	Power supply for the internal logic circuit. (VCC=2.2~3.3V)
31	GND2	GND-terminal for analog circuit.
32	DUMMY2	DUMMY PIN

Date: 2006/12/7 AMP DISPLAY 11

7.1 System interface

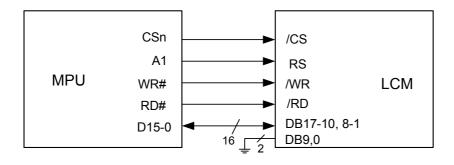
IM bits setting and the type of system interface for LCD


IM0	IM3	MPU interface mode	DB pins
0	0	16-bit bus interface, 80-system	DB17-10, 8-1
0	1	18-bit bus interface, 80-system	DB17-0
1	0	8-bit bus interface, 80-system	DB17-10
1	1	9-bit bus interface, 80-system	DB17-9

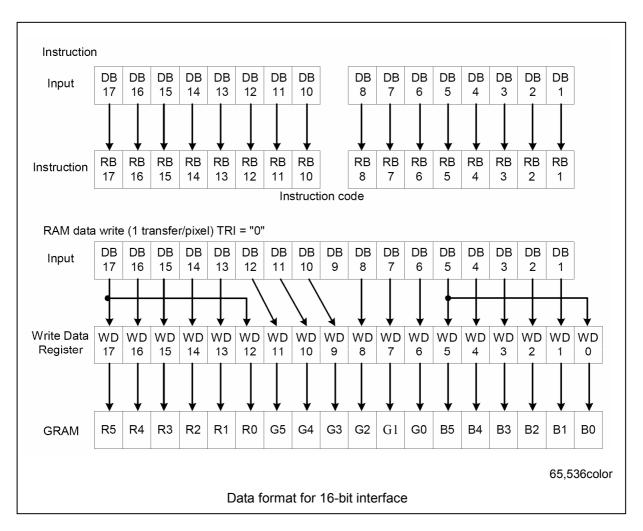

System Interface

7.2 80-system 18-bit interface

The 80-system 18-bit parallel data transfer can be used bye setting IM3 & IM0 pins to "10". The below picture is the example of interface with i80Microcomputer and data format of 18-bit system interface.

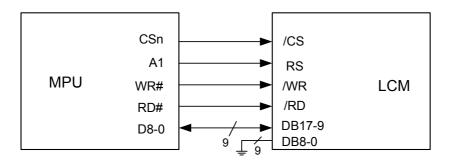


Data format for 18-bit interface

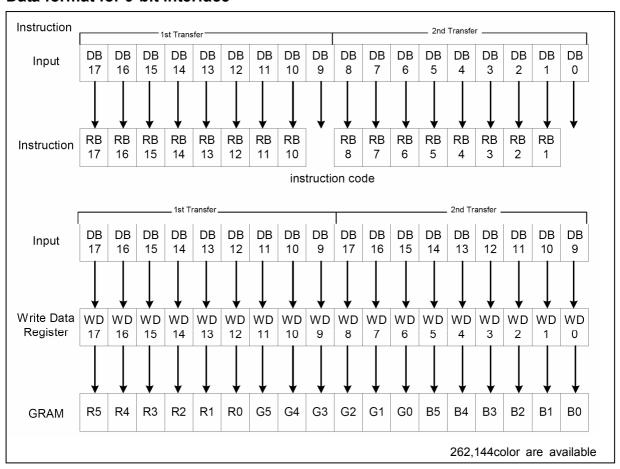


7.3 80-system 16-bit interface

The 80-system 16-bit bus parallel data transfer can be used bye setting IM3 & IM0 pins to "00". The data written to GRAM is expended to 18-bit bys data automatically in the LSI. Unused pin(DB9,DB0) must be fixed to the VDD or GND level.

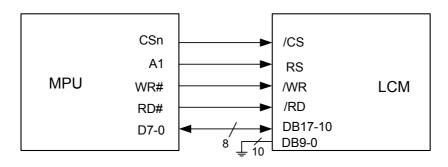


Data format for 16-bit interface

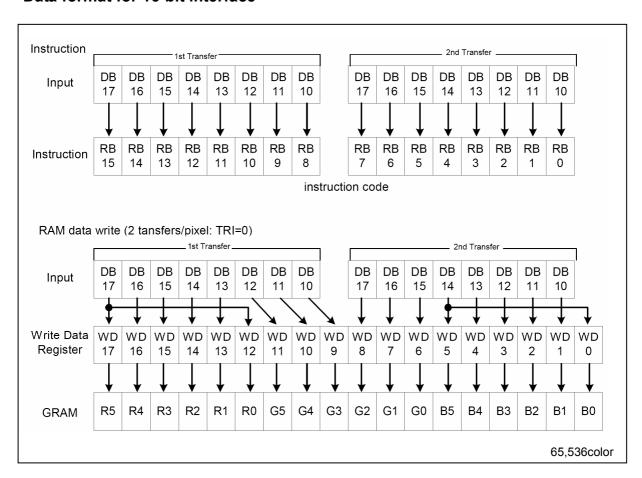


7.4 80-system 9-bit interface

The 80-system 9-bit bus parallel data transfer can be used bye setting IM3 & IM0 pins to "11". In 80-system 9-bit bus parallel data transfer mode, the 16-bit bus instruction and GRAM write data are divided into lower and upper nine bits, and then the upper nine bits are transferred first. Unused pin(DB8-0) must be fixed to the VDD or GND level. Ensure that upper bytes have to be written when writing the index register.



Data format for 9-bit interface



7.5 80-system 8-bit interface

The 80-system 8-bit bus parallel data transfer can be used bye setting IM3 & IM0 pins to "01". In 80-system 8-bit bus parallen data transfer mode, the 16-bit bus instruction and GRAM write data are divided into lower and upper eight bits, and then the upper eight bits are transferred first. Furthermore, the GRAM write data can be expended into 16-bit bus automatically in internal process. Unused pin(DB9-0) must be fixed to the VDD or GND level.

Data format for 16-bit interface

7.6 Instruction List

Register	-						Upper Code	Code							Lower Code	Code				
No.	Kegister	2	Z	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	IIISa ucaons
ã	index	W	0	٠		*	•					٠	ID6	ID5	ĭD4	ĩD3	iD2	£D1	iD0	
SR	Status Read	20	0	1.7	Le	L5	1.4	13	L2	5	L0	0	0	0	0	0	0	0	0	
Rooh	Oscillation Start	1 8			, ,	, ,	, ,		, ,			, .		, .	, ,		, ,	٠ .	-	
	Device Code Read	20	_	_	O O	500	0	n 0	0	3 -	8 -	0	0	0	0	* -	, 0	2 0	5 -	
R01h	Driver Output Control	W	_	0	(O)	(O) HSPL	(G)	(O) P	(0)	(O (S	(O 88	0	0	0	() N	(1) K	32		(1) N	
R02h	LCD AC driving Control	W	1	0	0	0	0	(O)	(±)	(0) (0)	(O)	0	0	(0) SWN	(0)	(0) (0)	NW2	(0) 1	(0) 0WN	
R03h	Entry Mode	∀	_	(O) 72	DFM1	DFM0	(0) R	0	0	(0) MWH	0	0	0	(1) M	(÷	(0) AM	(0) (0)	<u>6</u> 6	(O) (Q)	
R04h	Compare Register	W	-	0	0	© P1	(0) (0)	() CP9	@ G	@ CP	(G) CP	0	0	(e) CP _S	6 P	ê g	@ CP 22	99	e g	
R05h	Compare Register (2)	W		0	0	0	0	0	0	0	0	0	0	CP17 (0)	CP16	CP15	(O) 14	CP13	OP12	
R07h	Display Control (1)	W		0	0	0	PT1	(0)	VLE2 (0)	(0) (0)	SPT (0)	0	0	(0)	DTE	9 P	(O)	9 9	6 B	
R08h	Display Control (2)	W		0	0	0	0	(1)	(O)	(6 P)	(e) Fg	0	0	0	0	(1) BP3	6P2	() B	(O)	
R09h	Display Control (3)	W		0	0	0	0	0	0	0	0	0	0	(0) PTG1	PTG0	(0)	(0)	(O)	(0)	
ROBh	Frame Cycle Adjustment	×	_	@ <u>6</u>	(OD)	SDT1 (0)	SDT0 (0)	(O)	@ E	DIV1 (0)	DIV0	0	0	0	0	RTN3 (0)	(0)	RTN1 (0)	RTN0	
Roch	External Display Interface Control	W	-	0	0	0	0	0	0	0	(O)	0	0	(0)	(0) 0MD	0	0	(O)	RIMO (0)	
R10h	Power Control (1)	W		0	SAP2	SAP1	SAPO (0)	0	BT2	(0) BT1	(0) OTB	0	(6) AP2	(c) Ag	() A	0	∃ 只	© ₽	(0) BTS	
R11h	Power Control (2)	W		0	0	0	0	0	(O) 22	(e) (e)	(0) (0)	0	(a) (b)	(e) E	(O) (O)	0	<u>Θ</u> δ	<u>@ S</u>	(e) S	
R12h	Power Control (3)	W	,	0	0	0	0	0	0	0	0	0	0	0	(0) N	(0)	(0)	(0) (0)	(0)	
R13h	Power Control (4)	W		0	0	VCOMG (0)	VDV4 (0)	(0)	(0) (0)	(0) (0)	(0)	0	0	0	(0)	VCM3 (0)	(0)	(0)	(0)	
R21h	RAM Address Set	W	1	AD15 (0)	AD14 (0)	AD13 (0)	AD12 (0)	AD11	AD10 (0)	(0)	AD8 (0)	AD7 (0)	AD6 (0)	(0)	(0) AD4	(0)	AD2 (0)	(0)	(0)	
R22h	RAM data Write/Read	W	1		RAM	WD1	WD17-0 /RAM		(RD17-0)											
R23h	RAM Write Data Mask (1)	W	1	0	0	(0)	(0) 0!WW	(0) 6MM	(0)	(0)	(0)	0	0	(0)	(0)	(O)	(0)	(0)	(0)	
R24h	RAM Write Data Mask (2)	W	_	0	0	0	0	0	0	0	0	0	0	WM17 (0)	WM16	WM15	(0)	(0) (0)	(0) (0)	
R30h	r Control (1)	W	-1	0	0	0	0	0	MP 12 (0)	MP 11 (0)	MP 10 (0)	0	0	0	0	0	MP 02 (0)	MP 01	MP 00 (0)	
R31h	r Control (2)	W		0	0	0	0	0	MP 32 (0)	MP P31 (0)	MP 30	0	0	0	0	0	MP 22	MP 21	MP 20 (0)	
R32h	r Control (3)	W	1	0	0	0	0	0	MP52 (0)	MP 51 (0)	(0)	0	0	0	0	0	MP 42 (0)	MP 41	MP 40 (0)	
R33h	r Control (4)	W		0	0	0	0	0	CP 12	(e) ±2	(0) (0)	0	0	0	0	0	(0) (0)	(0) O1	(0) (0)	
R34h	r Control (5)	W		0	0	0	0	0	MN12 (0)	MN11 (0)	MN10 (0)	0	0	0	0	0	(0) (0)	(0) (0)	(0) MN00	
R35h	r Control (6)	W		0	0	0	0	0	MN32 (0)	MN31 (0)	MN30 (0)	0	0	0	0	0	(0) (0)	(0)	MN20 (0)	
R36h	r Control (7)	W	1	0	0	0	0	0	MN52 (0)	MN51 (0)	MN50 (0)	0	0	0	0	0	WN42 (0)	MN41 (0)	MN40 (0)	
R37h	r Control (8)	₩		0	0	0	0	0	CN12 (0)	(0) (0)	(0) (0)	0	0	0	0	0	(0) (0)	(0) (0)	(0)	
R38h	r Control (9)	W	1	0	0	0	(0)	OP13	OP12 (0)	OP11 (0)	OP10 (0)					OP03 (0)	(0)	OP01	OP00 (0)	
R39h	r Control (10)	W	1	0	0	0	ON14 (0)	(0) (0)	ON12 (0)	ON11 (0)	ON10 (0)					(0)	ON02 (0)	ON01	(0)	
R40h	Gate Scan Start Position	W	1	0	0	0	0	0	0	0	0	0	0	0	SCN4 (0)	SCN3	SCN2	SCN1	(0)	
R41h	Vertical Scroll Control	W	1	0	0	0	0	0	0	0	0	(0) (0)	(e) {c	(0) VL5	@ \Z	(0) YL3	@ £	6₹	(e) C	
R42h	First Screen Driving Position	W		SE17	SE16	SE15	SE14 (1)	SE13	SE12 (0)	SE11	SE10	SS17 (0)	SS17 (0)	SS17 (0)	SS17 (0)	SS17 (0)	SS17 (0)	SS17 (0)	SS17 (0)	
R43h	Second Screen Driving Position	W	_	(±) SE27	SE26 (1)	SE25 (0)	SE24 (1)	SE23 (1)	SE22 (0)	SE21	SE20	SS27 (0)	SS26 (0)	SS25 (0)	SS24 (0)	SS23 (0)	SS22 (0)	(0) (0)	SS20 (0)	
R44h	Horizontal RAM Address Position	W	1	HEA7	HEA6	HEA5	(0)	(1)	HEA2 (1)	HEA1	HEA0 (1)	HSA7 (0)	HSA6 (0)	HSA5	HSA4 (0)	(0)	HSA2 (0)	(0)	HSA0 (0)	
R45h	Vertical RAM Address	W	1	VEA7 (1)	√EA6 (1)	VEA5 (0)	(1)	(t) (t)	VEA2 (0)	VEA1	√EA0 (1)	VSA7 (0)	VSA6 (0)	VSA5 (0)	VSA4 (0)	VSA3 (0)	VSA2 (0)	VSA1 (0)	VSA0 (0)	

7.7 Instruction Explanation

	Input Parts								
Signals	I/O	Pin Number	Connected with	Description					
IM3-1, IM0	ı	4	VSSD/ IOVcc	Select the MPU interface mode as listed below IMO(ID) IM1 IM2 IM3 MPU interface mode DB pins 0 0 0 0 Setting invalid -					
NCS	ı	1	MPU	Note: If the serial data transfer interface was selected, IM0 pin is used like the ID setting for the device code in transfer data. Chip select signal. Low: chip can be accessed; High: chip cannot be accessed. Must be connected to VSSD if not in					
VLD	1	1	MPU	use. Fix to VSSD					
RS	1	1	MPU	The signal for register index or register command select. Low: Register index or internal status (in read operation); High: Register command. Connect to IOVcc or VSSD level when serial data transfer interface is selected.					
E_NWR	ı	1	MPU	Serves as a write signal and writes data at the rising edge in i80 system interface. Serves as the synchronous clock signal in serial data transfer interface.					
RW_NRD	ı	1	MPU	Low: Write: High: Read) Serves as a read signal and reads data at the low level in i80 system interface. Fix it to IOVcc or VSSD level when using serial data transfer interface.					
ENABLE	ı	1	MPU	A data ENABLE signal in RGB I/F mode. Fix the unused pin to either the VSSD level or the IOVcc level. Low: Selected (access enabled) The polarity of the ENABLE signal is inverted by the EPL bit. EPL					
VSYNC	1	1	MPU	Frame's ynchronizing signal. Fix to the IOVcc level when not used. If VSPL=0: Active low. If VSPL=1: Active high.					
HSYNC	ı	1	MPU	Frame synchronizing signal. Fix to the IOVcc level when not used. If HSPL=0: Active low. If HSPL=1: Active high.					
DOTCLK	ı	1	MPU	Dot clock signal. Fix to the IOVcc level when not used. If DPL=0: Data are input on the rising edge of DOTCLK. If DPL=1: Data are input on the falling edge of DOTCLK.					
PD0~17	I	18	MPU	An 18-bit bus RGB data bus in 80-system interface mode. Fix the unused pins to either the VSSD level or the IOVcc level. 6-bit bus: use PD17-PD12 16-bit bus: use PD17-PD13 and PD11-PD1 18-bit bus: use PD17-PD0					

	Input Parts									
Signals	als I/O Pin Connected Number with			Description						
NRESET	I	1	MPU or reset circuit	Reset pin. Setting either pin low initializes the LSI. Must be reset after power is supplied.						
VcomR	ı	1	Variable Resistor or open	A VoomH reference voltage. When adjusting VoomH externally, set registers to halt the VoomH internal adjusting circuit and place a variable resistor between VGAM1OUT and VSSD. Otherwise, leave this pin open and adjust VoomH by setting the internal register of the HX8306A.						
Vci1	I	1	VciOUT	A reference voltage for the step-up circuit1. Connect to an external power supply of 2.75V of less when not using an internal reference voltage.						
VLCD	Ι	1	VLCDC	A power supply for the source driver outputs. A reference voltage for the step-up circuit2						
VGH		1	VGHC	A power supply for the TFT LCD's gate driver. Connect to VGHC.						
VGL		1	VGLC	A power supply for the TFT LCD's gate driver. Connect to VGLC.						
VCL	_	1	VCLC	A power supply for the VoomL level. Connect to VCLC.						
TEST1		1	VSSD	A test pin. Make sure to fix it to the VSSD level.						
TEST2	_	1	VSSD	A test pin. Make sure to fix it to the VSSD level.						
VGS	I	1	VSSD or external resistor	Connect to a variable resistor to adjusting internal gamma reference voltage for matching the characteristic of different panel used.						
Vci	Ι	1	Power supply	For analog power supply. Connect to an external power supply 2.5V~3.3V.						
VciLVL	Ī	1	Power Supply	Generates a reference voltage (VciOUT, REGP) from the VciLVL level according to the ratio determined by the VC2-0 BITS. Connect to Vci on the FPC.						

Input/Output Part							
Signals	I/O	Pin Number	Connected with	Description			
C11A,C11B	I/O	2	Step-up Capacitor	Connect to the step-up capacitors according to the step-up factor. Leave this pin open if the internal step-up circuit is not used.			
C21A,C21B C22A,C22B	I/O	6	Step-up Capacitor	Connect these pins to the capacitors for the step-up circuit 2. According to the step-up rate. When not using the step-up circuit2, disconnect them.			
OSC1,OSC2	I/O	2	Oscillation Resistor	Connect an external resistor for generating internal clock by internal R-C oscillation. Or an external clock signal is supplied through OSC1 with OSC2 open.			
DB0_S DI	I/O	1	MPU	Operates liked an 18-bit bi-directional data bus. 8-bits bus I/F: DB17-10 9-bits bus I/F: DB17-9 16-bits bus I/F: DB17-10, 8-1 18-bits bus I/F: DB17-0 Connected unused pins to the IOVcc or VSSD level. When Serial Data Input pin in Serial Data Transfer interface. The input data is latched by the rising edge of the SCL signal on the chip.			
DB1_SDO	I/O	1	MPU	Operates liked an 18-bit bi-directional data bus. 8-bits bus I/F: DB17-10 9-bits bus I/F: DB17-9 16-bits bus I/F: DB17-10, 8-1 18-bits bus I/F: DB17-0 Connected unused pins to the IOVcc or VSSD level. When Serial Data Output pin in Serial Data Transfer interface. The data is output by the falling edge of the SCL signal on the chip.			
DB2~17	I/O	16	MPU	Operates liked a 18-bit bi-directional data bus 8-bit bus: use DB8-DB1 9-bit bus: use DB8-DB0 16-bit bus: use DB17-DB10 and DB8-DB1 18-bit bus: use DB17-DB0 Connected unused pins to the IOVcc or VSSD level.			
REGP	I/O	1	Test pin	A test pin for VGAM1OUT. Disconnect it.			
VGAM1OUT	I/O	1	Stabilizing capacitor or power supply	A reference voltage for VGAM2 between VSSD and VLCD from the reference voltage between Vci and VSSD that is generated internally. VGAM1OUT serves as a source driver grayscale reference voltage VGAM2, a VcomH level reference voltage, and a Vcom amplitude reference voltage. Connect to a stabilizing capacitor. VGAM1OUT = 3.0 ~ (VLCD – 0.5)V			
VTESTS	I/O	1	Open	A test pin. Disconnect it.			
TVCOMHI	I/O	1	Open	A test pin for VcomH. Disconnect it.			
TVCOMLI	I/O	1	Open	A test pin for VcomL. Disconnect it.			
TVMAG	I/O	1	Open	A test pin for VcomL. Disconnect it.			
TESTO1~4	-	4	-	Dummy pads. Disconnect them.			
DUMMY1,2,13	-	3	-	Dummy pads. Disconnect them.			
DUMMY3-12,14- 19	-	16	-	Dummy pads. Can be connected to the wiring to the COG panel.			
DUMMYR1-9	-	9	-	Dummy pads. Available for measuring the COG contact resistance. DUMMYR1 and DUMMYR2 are short-circuited within the chip. DUMMYR3, DUMMYR4 and DUMMYR5 are short-circuited within the chip. DUMMYR6, DUMMYR7, DUMMYR8, and DUMMYR9 are short circuited within the chip.			
VGLDUM1~4	-	4	-	Outputs the internal VGL level. Use as dummy gate output pins.			

				Input/Output Part
Signals	I/O	Pin Number	Connected with	Description
C11A,C11B	I/O	2	Step-up Capacitor	Connect to the step-up capacitors according to the step-up factor. Leave this pin open if the internal step-up circuit is not used.
C21A,C21B C22A,C22B	I/O	6	Step-up Capacitor	Connect these pins to the capacitors for the step-up circuit 2. According to the step-up rate. When not using the step-up circuit2, disconnect them.
OSC1,OSC2	I/O	2	Oscillation Resistor	Connect an external resistor for generating internal clock by internal R-C oscillation. Or an external clock signal is supplied through OSC1 with OSC2 open.
DB0_S DI	I/O	1	MPU	Operates liked an 18-bit bi-directional data bus. 8-bits bus I/F: DB17-10 9-bits bus I/F: DB17-9 16-bits bus I/F: DB17-10, 8-1 18-bits bus I/F: DB17-0 Connected unused pins to the IOVcc or VSSD level. When Serial Data Input pin in Serial Data Transfer interface. The input data is latched by the rising edge of the SCL signal on the chip.
DB1_SDO	I/O	1	MPU	Operates liked an 18-bit bi-directional data bus. 8-bits bus I/F: DB17-10 9-bits bus I/F: DB17-9 16-bits bus I/F: DB17-10, 8-1 18-bits bus I/F: DB17-0, 8-1 When Serial Data Output pin in Serial Data Transfer interface. The data is output by the falling edge of the SCL signal on the chip.
DB2~17	I/O	16	MPU	Operates liked a 18-bit bi-directional data bus 8-bit bus: use DB8-DB1 9-bit bus: use DB8-DB0 16-bit bus: use DB17-DB10 and DB8-DB1 18-bit bus: use DB17-DB0 Connected unused pins to the IOVcc or VSSD level.
REGP	I/O	1	Test pin	A test pin for VGAM1OUT. Disconnect it.
VGAM1OUT	1/0	1	Stabilizing capacitor or power supply	A reference voltage for VGAM2 between VSSD and VLCD from the reference voltage between Vci and VSSD that is generated internally. VGAM1OUT serves as a source driver grayscale reference voltage VGAM2, a VcomH level reference voltage, and a Vcom amplitude reference voltage. Connect to a stabilizing capacitor. VGAM1OUT = 3.0 ~ (VLCD – 0.5)V
VTESTS	I/O	1	Open	A test pin. Disconnect it.
TVCOMHI	I/O	1	Open	A test pin for VcomH. Disconnect it.
TVCOMLI	I/O	1	Open	A test pin for VcomL. Disconnect it.
TVMAG	I/O	1	Open	A test pin for VcomL. Disconnect it.
TESTO1~4	-	4	-	Dummy pads. Disconnect them.
DUMMY1,2,13	-	3	-	Dummy pads. Disconnect them.
DUMMY3-12,14- 19	-	16	-	Dummy pads. Can be connected to the wiring to the COG panel.
DUMMYR1-9	-	9	-	Dummy pads. Available for measuring the COG contact resistance. DUMMYR1 and DUMMYR2 are short-circuited within the chip. DUMMYR3, DUMMYR4 and DUMMYR5 are short-circuited within the chip. DUMMYR6, DUMMYR7, DUMMYR8, and DUMMYR9 are short circuited within the chip.
VGLDUM1~4	-	4	-	Outputs the internal VGL level. Use as dummy gate output pins.

	Power Part								
Signals	Signals I/O Pin Connected Number with			Description					
Vcc	-	1	Power supply	A power supply for the internal logic. VCC = 2.4 ~ 3.3V					
IOVcc	-	1	Power supply	Power supply for internal core logic when VDC is disabled. Voltage range: 1.65 ~ 3.3V if VDC is disabled. Tie together with VCC if VDC is enabled.					
VSSA	-	1	Power supply	Analogy ground. VSSA = 0V. When using the COG method, connect to VSSD on the FPC to prevent noise.					
VSSD	-	1	Power supply	Ground for the internal RAM. VSSD = 0V. When using the COG method, connect to VSSD on the FPC to prevent noise.					
V0P,V61P	I or O	2	Stabilizing capacitor	Outputs from the internal positive polarity operational amplifier when it is on (when SAP2-0 = "001", "010", "011", "100", and "101"). Connect to a capacitor to stabilize the amplifier.					
V0N,V61N	I or O	2	Stabilizing capacitor	Outputs from the internal negative polarity operational amplifier when it is on (when SAP2-0 = "001", "010", "011", "100", and "101"). Connect to a capacitor to stabilize the amplifier					

7.8 Reset Function

Te 8309-A is internally initialized by NRESET input. During the reset period, no instruction or GRAM data access from MPU can be accepted. The reset input must be held for at lease 1ms. Do not access the GRAM or initially set the instruction until the R-C oscillation frequency is stable after power has been supplied(10ms).

Date: 2006/12/7 AMP DISPLAY 23

8 Timing Characteristics

8.1Timing Characteristics

Read / Write Characteristics (8080-series MPU)

80-system (18/16 Bit))Bus Timing Characteristics

<<Normal Write Mode(HWM=0),loVcc=1.65V-2.4V / VCC=2.4~3.3V >>

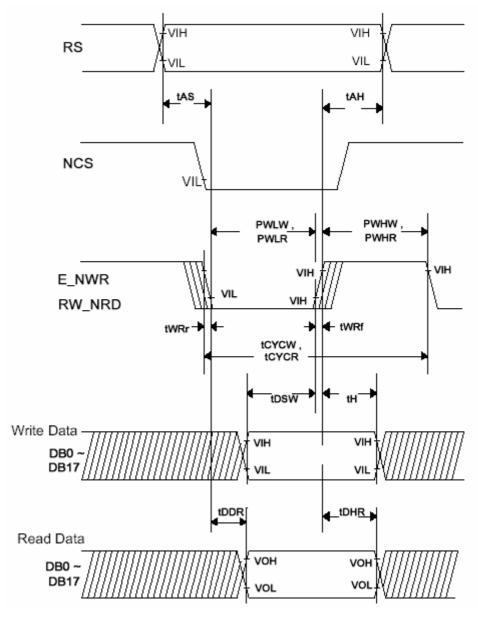
	Symbol	Unit	Min	Тур	Max		
Due evole time Write			tCYCW	ns	350	-	-
Bus cycle time	;	Read	tCYCR	ns	500	-	-
Write low-leve	l pulse width		PWLW	ns	40	-	-
Read low-leve	I pulse width		PWLR	ns	250	-	-
Write high-leve	el pulse width		PWHW	ns	70	-	-
Read high-leve	el pulse width		PWHR	ns	200	-	-
Write/Read ris	e/fall time		tWRr,WRf	ns	ı	-	25
Set up time	(RS to NCS,E_NWR) (RS toNCS,RE_NRD)		tAS	ns	5	-	T.B.D
Set up time			iAS	ns	5	-	-
Address hold t	time		tAH	ns	5	-	-
Write data set	Write data set up time				15	-	-
Write data hold time			tH	ns	15	-	-
Read data delay time			tDDR	ns	-	-	200
Read data hol	d time		tDHR	ns	5	-	-

<<Normal Write Mode(HWM=0),loVcc2.4V-3.3V / VCC=2.4~3.3V >>

Ito	Symbol	Unit	Min	Тур	Max		
Bus cycle time	Rue evele time Write			ns	300	-	-
bus cycle time		Read	tCYCR	ns	500	-	-
Write low-level pul	se width		PWLW	ns	40	-	-
Read low-level pul	se width		PWLR	ns	250	-	-
Write high-level pu	llse width		PWHW	ns	30	-	-
Read high-level pu	ılse width		PWHR	ns	200	-	-
Write/Read rise/fal	II time		tWRr,WRf	ns		-	25
Cot up time	(RS to CS*	,WR*)	tAS	ns	-	-	-
Set up time	(RS to RD*)		IAS	ns	5	-	-
Address hold time			tAH	ns	5	-	-
Write data set up ti	Write data set up time			ns	15	-	-
Write data hold time			tH	ns	15	-	-
Read data delay time			tDDR	ns	-	-	80
Read data hold tim	пе		tDHR	ns	5	-	-

<<High-Speed Write Mode(HWM=1),loVcc = 1.65V-2.4V / VCC=2.4V~3.3V>>

_	Symbol	Unit	Min	Тур	Max		
Due evele time		Write	tCYCW	ns	100	_	-
Bus cycle time	;	Read	tCYCR	ns	500	-	-
Write low-leve	l pulse width		PWLW	ns	40	-	-
Read low-leve	I pulse width		PWLR	ns	250	-	-
Write high-leve	el pulse width		PWHW	ns	30	-	-
Read high-leve	el pulse width		PWHR	ns	200	-	-
Write/Read ris	e/fall time		tWRr,WRf	ns	-	-	25
Set up time	(RS to NCS,E_NWR) (RS toNCS,RE_NRD)		tAS	ns	5	-	-
Set up time			iAS	ns	5	-	-
Address hold t	ime		tAH	ns	5	-	-
Write data set	Write data set up time			ns	15	-	-
Write data hold time			tH	ns	20	-	-
Read data delay time			tDDR	ns	-	-	200
Read data hole	d time		tDHR	ns	5	-	-

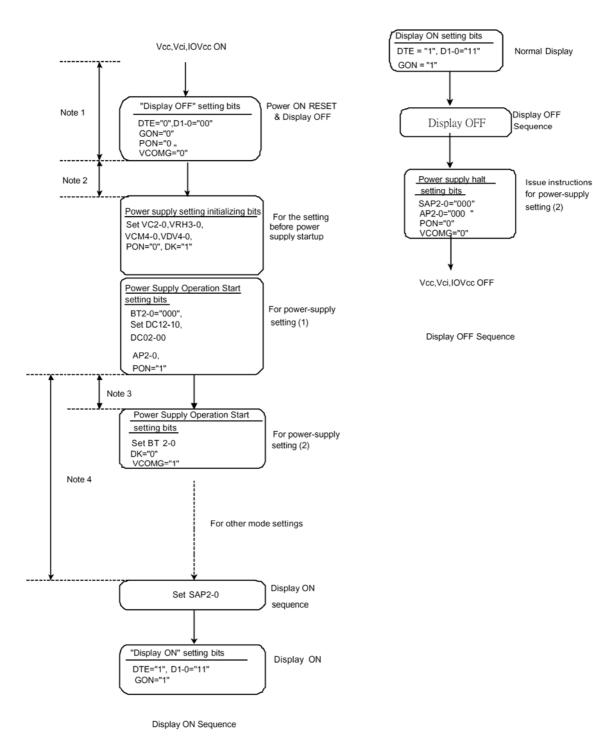

<<High-Speed Write Mode(HWM=1),loVcc = 2.4V-3.3V / Vcc=2.4~3.3V >>

Item	Symbol	Unit	Min	Тур	Max	
Bus cycle time	Write	tCYCW	ns	100	-	-
Bus cycle time	Read	tCYCR	ns	500	-	-
Write low-level pulse width		PWLW	ns	40	-	-
Read low-level pulse width		PWLR	ns	250	-	-
Write high-level pulse width		PWHW	ns	30	-	-
Read high-level pulse width		PWHR	ns	200	-	-
Write/Read rise/fall time		tWRr,WRf	ns	-	-	25
Set up time (RS to CS'	(RS to CS*,WR*) (RS to RD*)		ns	5	-	-
Set up time (RS to RD)			ns	5	-	-
Address hold time		tAH	ns	5	-	-
Write data set up time		tDSW	ns	15	-	-
Write data hold time	tH	ns	20	-	-	
Read data delay time	tDDR	ns	-	-	200	
Read data hold time	•	tDHR	ns	5	-	-

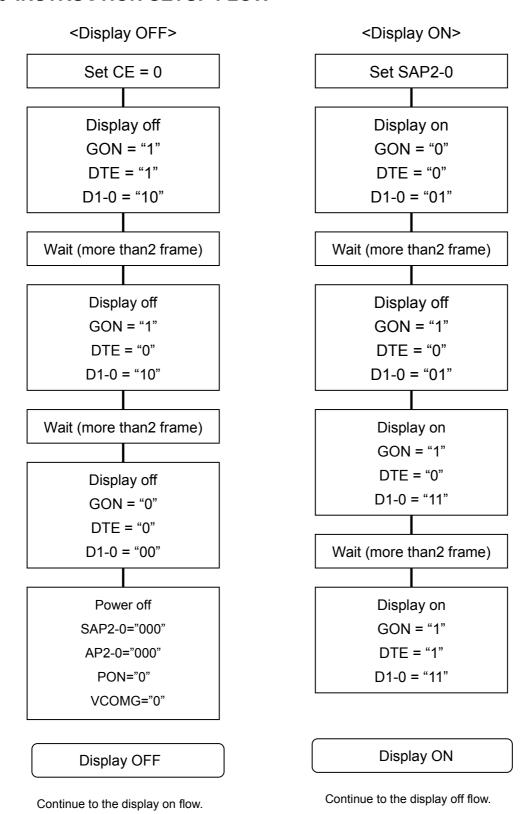
Reset Timing Characteristics

Item	Symbol	Unit	Min	Тур	Max
Reset"low"level width	tRES	ms	1	-	-
Reset rise time	trRES	us	-	-	10

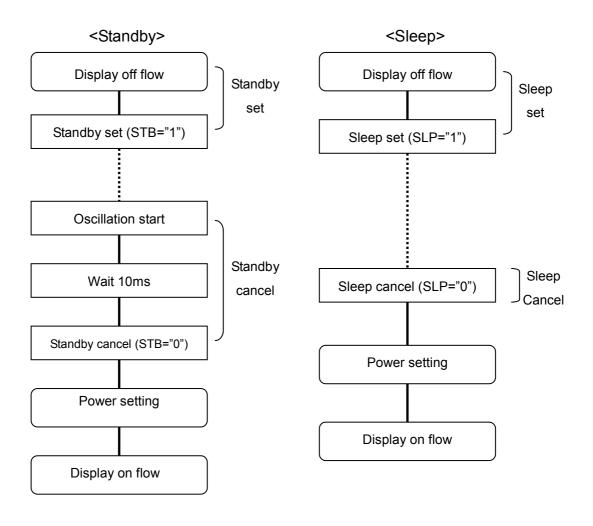
Date: 2006/12/7 AMP DISPLAY 25



80-System Bus Timing


Note 1) PWEL is specified during the overlap period. (SC*="Low", WR* or RD*="Low")

Note 2) When using 16-bit bus interface, parallel data can be transferred through DB17-10 pin and DB8-1 and DB0 must be fixed to "Vcc" or "GND".


9 SETUP FLOW OF POWER SUPPLY

10 INSTRUCTION SETUP FLOW

Date: 2006/12/7 AMP DISPLAY 28

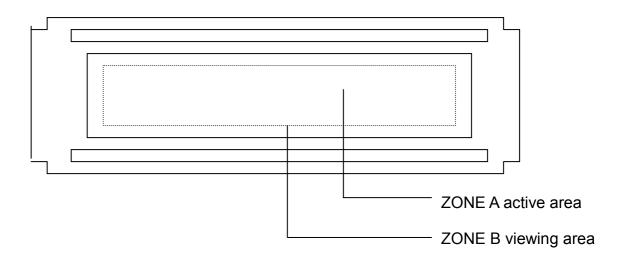
11 QUALITY AND RELIABILITY

11.1 TEST CONDITIONS

Tests should be conducted under the following conditions:

Ambient temperature : $25 \pm 5^{\circ}$ C Humidity : $60 \pm 25\%$ RH.

11.2 SAMPLING PLAN


Sampling method shall be in accordance with MIL-STD-105E , level II, normal single sampling plan .

11.3 ACCEPTABLE QUALITY LEVEL

A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation.

11.4 APPEARANCE

An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under flourescent light. The inspection area of LCD panel shall be within the range of following limits.

Date: 2006/12/7 AMP DISPLAY 30

11.5 INSPECTION QUALITY CRITERIA

No.	Item	Criterion for defects	Defect type
1	Non display	No non display is allowed	Major
2	Irregular operation	No irregular operation is allowed	Major
3	Short	No short are allowed	Major
4	Open	Any segments or common patterns that don't activate are rejectable.	Major
5	Black/White spot (I)	Size D (mm) Acceptable number $D \le 0.15$ Ignore $0.15 < D \le 0.20$ 3 $0.20 < D \le 0.30$ 2 $0.30 < D$ 0	Minor
6	Black/White line (I)	$ \begin{array}{ c c c c c c } \hline Length(mm) & Width (mm) & Acceptable number \\ \hline 10 < L & 0.03 < W \leq 0.04 & 5 \\ \hline 5.0 < L \leq 10 & 0.04 < W \leq 0.06 & 3 \\ \hline 1.0 < L \leq 5.0 & 0.06 < W \leq 0.07 & 2 \\ L \leq 1.0 & 0.07 < W \leq 0.09 & 1 \\ \hline \end{array} $	Minor
7	Black/White sport (II)	Size D (mm) Acceptable number $D \le 0.30$ Ignore $0.30 < D \le 0.50$ 5 $0.50 < D \le 1.20$ 3 $1.20 < D$ 0	Minor
8	Black/White line (II)	$ \begin{array}{ c c c c c c } \hline Length \ (mm) & Width \ (mm) & Acceptable \ number \\ \hline 20 < L & 0.05 < W \leq 0.07 & 5 \\ 10 < L \leq 20 & 0.07 < W \leq 0.09 & 3 \\ 5.0 < L \leq 10 & 0.09 < W \leq 0.10 & 2 \\ L \leq 5.0 & 0.10 < W \leq 0.15 & 1 \\ \hline \end{array} $	Minor
9	Back Light	No Lighting is rejectable Flickering and abnormal lighting are rejectable	Major
10	Display pattern	Note: 1. Acceptable up to 3 damages 2. NG if there're to two or more pinholes per dot	Minor

	Blemish &						
	Foreign matters	Size D (mr	n)	Ac	ceptable number		
	r oroigir mattoro		D ≤ 0.15 Ignore				
11	Size:	0.15 < D < 0.20			3	Minor	
	$D = \frac{A+B}{2}$	$0.20 < D \le 0.30$			2		
	$D = \frac{1}{2}$	0.30 < D			0		
		Width (mm)	Length	(mm)	Acceptable number		
	Scratch on	W<0.03	Igno	·	Ignore		
	Polarizer	0.03 <w<0.05< td=""><td>L < 2</td><td></td><td>Ignore</td><td></td></w<0.05<>	L < 2		Ignore		
12			L > 2		1	Minor	
	A A	0.05 <w<u><0.08</w<u>	L > 1	.0	1		
	→ B		L <u><</u> 1		Ignore		
		0.08 <w< td=""><td>Note</td><td></td><td>Note(1)</td><td></td></w<>	Note		Note(1)		
		Note(1) Regard as	a blemis	h			
		Size D (mr	n)	Ac	ceptable number		
13	Bubble in	D < 0.20	,		Ignore	Minor	
13	polarizer	0.20 < D ≤ 0.50			3	IVIIIIOI	
		$0.50 < D \le 0.80$					
		0.80 < D 0					
	Stains on						
14	LCD panel				ven when wiped lightly	Minor	
1-7	surface	with a soft cloth	or simila	r cleanin	g too are rejectable.	WIIITOI	
15	Rust in Bezel	Rust which is vis	sible in th	ie bezel i	is rejectable.	Minor	
	Defect of						
16	land surface	Evident erevises	Minor				
10	contact (poor	Evident crevices	IVIIIIVI				
	soldering)						
	5 1	1. Failure to mou	ınt parts			Major	
17	Parts mounting	2. Parts not in th	•	cations a	are mounted	Major	
	mounting	3. Polarity, for ex	kample, i	s reverse	ed	Major	
		1. LSI, IC lead	width is	more t	han 50% beyond pad	Minor	
18	Parts	outline.					
10	alignment				and more than 50% of	Minor	
		the leads is o		id outline) .		
	Conductive	1. 0.45< <i>φ</i>	,N≧1			Major	
, .	foreign matter	2. 0.30< <i>φ</i> <0.45				Minor	
19	(Solder ball,	_		of solder	r ball (unit: mm)	,	
	Solder chips)	3. 0.50 <l< td=""><td>,N≧1</td><td></td><td>. , .,</td><td>Minor</td></l<>	,N≧1		. , .,	Minor	
			_		nip (unit: mm)		
					burnout, the pattern is	Minor	
20	Faulty PCB		ted, using a jumper wire for repair; 2 or more are corrected per PCB.			Minor	
20	correction	•		•	d no resist coating has	Minor	
		been perforn		,, 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IVIIIIOI	

11.6 RELIABILITY

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=96 hrs	
Low Temperature Operation	-20±3°C , t=96 hrs	
High Temperature Storage	80±3°C , t=96 hrs	1,2
Low Temperature Storage	-30±3°C , t=96 hrs	1,2
Humidity Test	40°C , Humidity 90%, 96 hrs	1,2
Thermal Shock Test	-30°C ~ 25°C ~ 80°C 30 min. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2
Vibration Test (Packing)	Sweep frequency: 10~55~10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2
Static Electricity	150pF 330 ohm <u>+</u> 8kV, 10times air discharge	

Note 1: Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions

(15-35°C, 45-65%RH).

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

12 USE PRECAUTIONS

12.1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

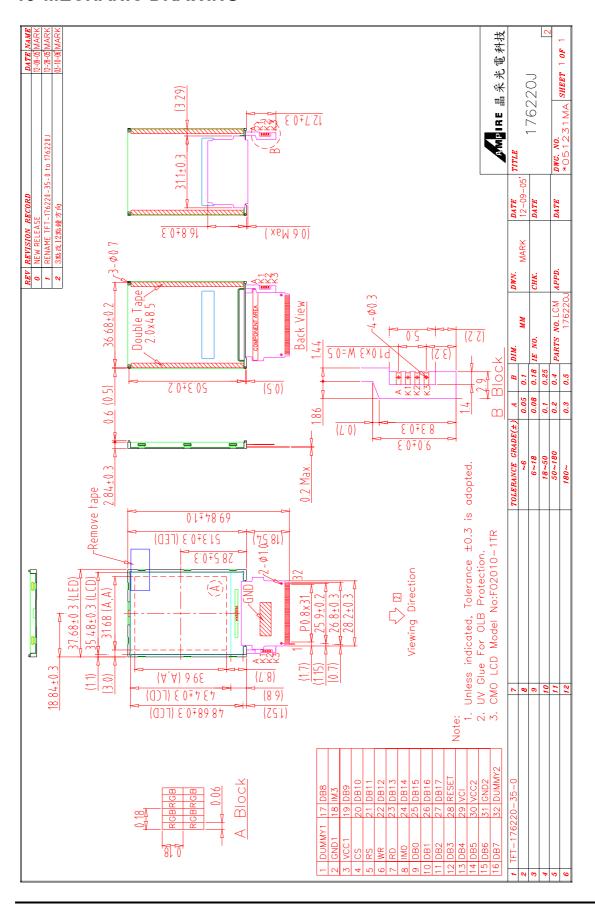
12.2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

12.3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

12.4 Operating precautions


- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that

- they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

12.5Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.

13 MECHANIC DRAWING

