

AMP DISPLAY INC.

SPECIFICATIONS

2.8 COLOR TFT MODULE W/TOUCH

CUSTOMER:	
CUSTOMER PART NO.	
AMP DISPLAY PART NO.	AM240320M8TNQW-T00H
APPROVED BY:	
DATE:	
	ROVED FOR SPECIFICATIONS ROVED FOR SPECIFICATION AND PROTOTYPES

AMP DISPLAY INC

9856 SIXTH STREET RANCHO CUCAMONGA CA 91730 TEL: 909-980-13410 FAX: 909-980-1419 WWW.AMPDISPLAY.COM

Date: 2006/05/22

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2007/05/22	-	New Release	JACK

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

1 Features

This single-display module is suitable for cell phone application. The Main-LCD adopts one backlight with High brightness 4-lamps white LED.

- (1) Construction: 2.8" a-Si color TFT-LCD, White LED Backlight, and FPCB.
- (2) Main LCD: 2.1 Amorphous-TFT 2.8 inch display, transmissive, Normally white type, 12 o'clock.
 - 2.2 240(RGB)X320 dots Matrix, 1/320 Duty.
 - 2.3 Narrow-contact ledge technique.
 - 2.4 Main LCD Driver IC: ILI9320
 - 2.5 Real 262K colors display:

262K: Red-6bit, Green-6bit, Blue-6bit (9/18-bit interface)
Dithering 262K: Red-5bit, Green-6bit, Blue-5bit (8/16-bit interface)

- (3) Low cross talk by frame rate modulation
- (4) Direct data display with display RAM
- (5) Partial display function: You can save power by limiting the display space.
- (6) MPU interface: 8/16-bit 80-Series, parallel interface.
- (7) Abundant command functions:

Area scroll function

Date: 2006/05/22

Display direction switching function

Power saving function

Electric volume control function: you are able to program the temperature compensation function.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

2 Mechanical specifications

Dimensions and weight

Item		Specifications	Unit
External shape dimensions		*1 50.0 (W) x 98.5 (H) .	mm
Main	Pixel size	0.18 (W) x 0.18 (H)	mm
LCD	Active area	43.2 (W) x 57.6 (H)	mm
Number of Pixels		240(H)x320(V) pixels	mm
	Weight	TBD	g

^{*1.} This specification is about External shape on shipment from AMPIRE.

3 Absolute max. ratings and environment

3-1 Absolute max. ratings

Ta=25°C GND=0V

Item	Symbol	Min.	Max.	Unit	Remarks
Power voltage	VDD – GND	-0.3	+3.3	V	
Power voltage	LED A – LED K	-0.5	+4.0	V	Parallel
Input voltage	VIN	-0.5	VDD	V	

3-2 Environment

Date: 2006/05/22

Item	Specifications	Remarks
Storage temperature	Max. +70 °C Min20 °C	Note 1: Non-condensing
Operating temperature	Max. +60 °C Min10 °C	Note 1: Non-condensing

Note 1 : Ta≤+40 °C · · · · Max.85%RH

Ta>+40 $^{\circ}$ C · · · The max. humidity should not exceed the humidity with 40 $^{\circ}$ C 85%RH.

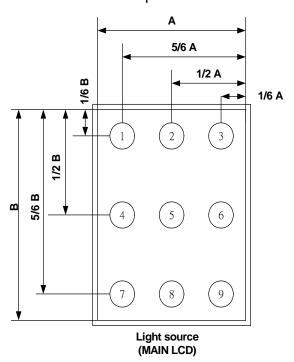
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

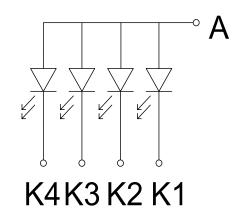
4 Electrical specifications

4-1 Electrical characteristics of LCM

 $(V_{DD}=3.0V, Ta=25 \,{}^{\circ}C)$

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
IC power voltage	V_{DD}		2.6	2.8	3.3	V
High-level input voltage	V _{IHC}		0.8V _{DD}		V_{DD}	V
Low-level input voltage	V _{ILC}		0		0.2V _{DD}	V
Consumption current of VDD	I _{DD}	LED OFF	-	8	-	mA
Consumption current of LED	I _{LED_ON}	V _{LED_ON} =3.6V	-	80	-	mA


^{3 1. 1/320} duty.

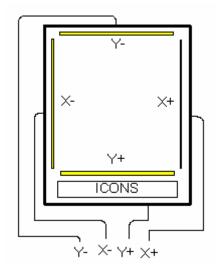

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

4-2 LED back light specification

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Forward voltage	V_{f}	I _f =80mA	3.4	3.6	3.8	٧
Reverse voltage	V _r		-	-	12	V
Forward current	I _f	4-chip Parallel	75	80	85	mA
Power Consumption	P_{BL}	$I_f = 80 \text{mA}$	-	288	-	mW
Uniformity (with L/G)	-	I _f =80mA	80%*1	-	-	
Bare LED Luminous intensity	V _f I _f	3.6V 80mA	3000	-	-	cd/m ²
Luminous color	White					
Chip connection	4 chip parallel connection					

Bare LED measure position:

*1 Uniformity (LT):
$$\frac{Min(P1 \sim P9)}{Max(P1 \sim P9)} \times 100 \ge 80\%$$


Date: 2006/05/22

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

4-3 Touch Panel Electrical Specification

Parameter	Condition	Standard Value
Terminal Resistance	X Axis	200 ~ 900 Ω
Terminal Resistance	Y Axis	200 ~ 900 Ω
Insulating Resistance	DC 25 V	More than $20M\Omega$
Linearity		±1.5 %
Notes life by Pen	Note a	100,000 times(min)
Input life by finger	Note b	1,000,000 times (min)

	Symbol	Function
1	X+	Touch Panel Right Signal in X Axis
2	Y+	Touch Panel Bottom Signal in Y Axis
3	X-	Touch Panel Left Signal in X Axis
4	Y-	Touch Panel Top Signal in Y Axis

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

5 Optical characteristics

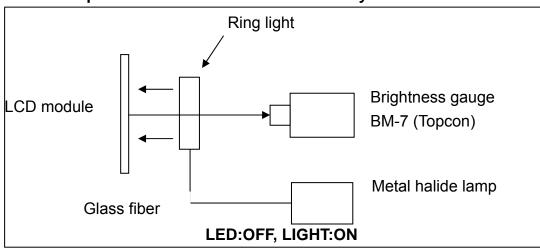
Main LCD

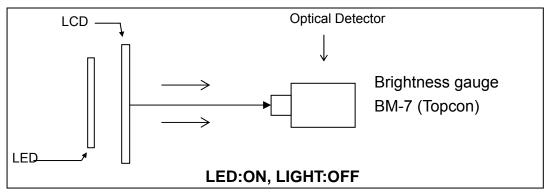
5.1 Optical characteristics

 $(1/320 \text{ Duty in case except as specified elsewhere Ta = }25^{\circ}\text{C})$

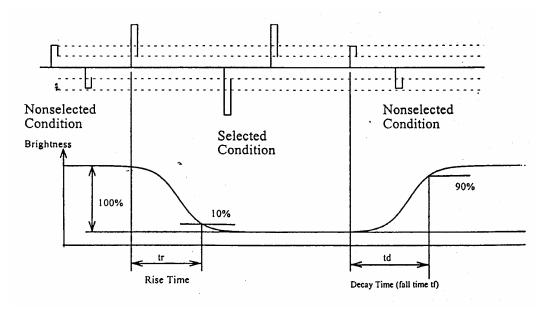
LED backlight transmissive module:

Item	Symbol	Temp.	Min.	Std.	Max.	Unit	Conditions
Response	Tr	25 °C		15	-	m.o	θ =0 ° , φ =0 °
time	Tf	25 °C		35		ms	(Note 2)
Contrast ratio	CR	25 °C	-	(250)	ı	-	θ =0°, φ =0° LED:ON, LIGHT:OFF (Note 4)
Transmittance	Т	25 °C	(5.0)	(5.5)	ı	%	
Visual angle range front and rear	θ	25 °C		(θf) 35 (θb) 15		De- gree	φ = 0°, CR \ge 10 LED:ON LIGHT:OFF (Note 3)
Visual angle range left and right	θ	25 °C		(θl) 45 (θr) 45		De- gree	φ =90°, CR \ge 10 LED:ON LIGHT:OFF (Note 3)
Visual angle direction priority				12:00			(Note 5)
Brightness			(180)	(200)		Cd/ m2	V _{LED} =3.6V, 80mA Full White pattern

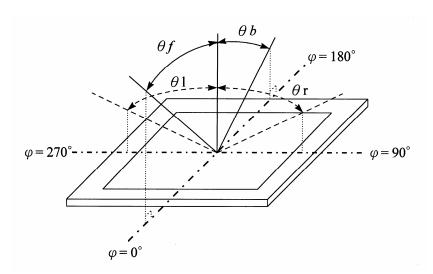

() is a default


5.2 CIE (x, y) chromaticity (1/320 Duty Ta = 25° C)

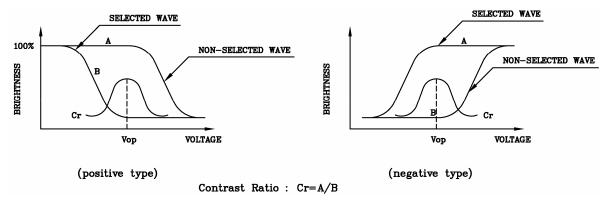
Item	Symbol	Т	ransmissiv	Conditions	
itom	Cymbol	Min.	Тур.	Max.	Conditions
Red	Х	(0.590)	(0.620)	(0.650)	$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
rteu	Υ	(0.310)	(0.340)	(0.370)	, ,
Green	Х	(0.303)	(0.333)	(0.363)	θ =0°, φ =0°
Giccii	Υ	(0.564)	(0.594)	(0.624)	·
Blue	Х	(0.132)	(0.152)	(0.182)	θ =0°, φ =0°
Dide	Υ	(0.196)	(0.116)	(0.146)	, ,
White	X	(0.275)	(0.305)	(0.335)	θ =0°, φ =0°
vviille	Υ	(0.294)	(0.324)	(0.354)	, ,


() is a default

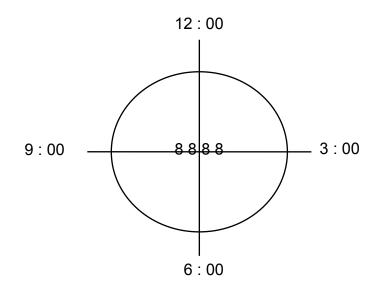
NOTE 1: Optical characteristic measurement system



NOTE 2: Response tome definition



The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY


NOTE 3: $\varphi \cdot \theta$ definition

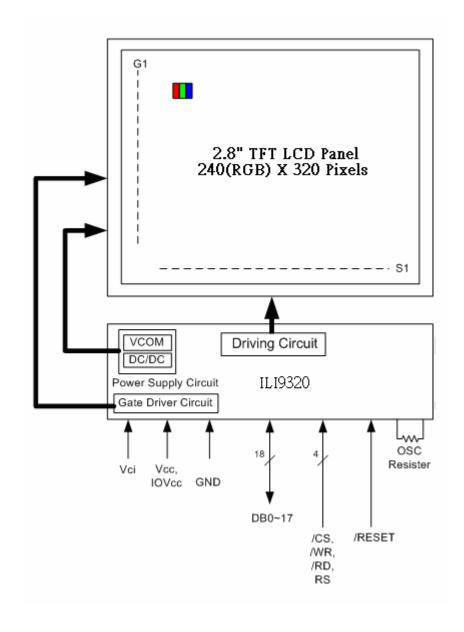
NOTE 4: Contrast definition

NOTE 5: Visual angle direction priority

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

6 Block Diagram

Date: 2006/05/22


Block diagram (Main LCD)

Display format: A-Si TFT transmissive, Normally white type, 12 o'clock.

Display composition: 240 x RGB x 320 dots

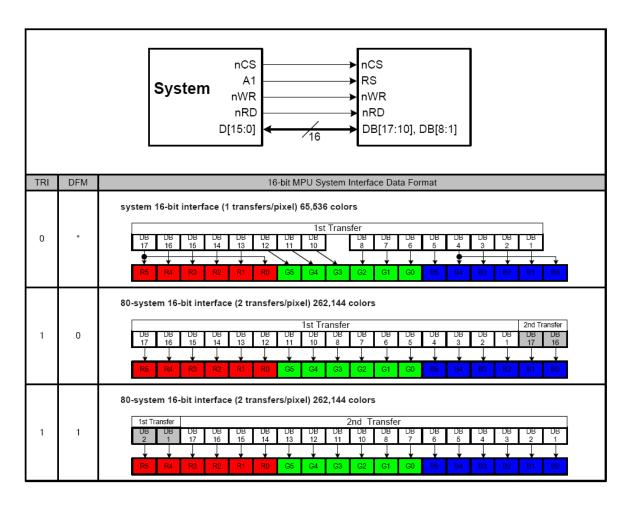
LCD Driver: ILI9320

Back light: White LED x 4 (I_{LED} =80mA)

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

7 Interface specifications

Pin No.	Terminal	Functions				
1	DB0	Data Bus Bit 0 Contract to IC Data Bus Bit 1				
2	DB1	Data Bus Bit 1 Contract to IC Data Bus Bit 2				
3	DB2	Data Bus Bit 2 Contract to IC Data Bus Bit 3				
4	DB3	Data Bus Bit 3 Contract to IC Data Bus Bit 4				
5	GND	GND-terminal				
6	VCC	Power supply for the internal logic circuit. (VCC=2.8~3.3V)				
7	/cs	Chip select signal. Low : chip can be accessed;				
		High : chip cannot be accessed. The signal for register index or register command select .				
8	RS	Low: Register index or register command select. Low: Register index or internal status (in read operation);				
		High: Register command.				
9	/WR	Write clock terminal , active "L" (80 series interface)				
10	/RD	Read clock terminal , active "L" (80 series interface)				
11	NC	Not connection (IM0)				
12	X+	Touch panel X axis (RIGHT)				
13	Y+	Touch panel Y axis (BOTTOM)				
14	X-	Touch panel X axis (LEFT)				
15	Y+	Touch panel Y axis (TOP)				
16	LED A	LED Backlight A terminal				
17	LED K1	LED Backlight K1 terminal				
18	LED K2	LED Backlight K2 terminal				
19	LED K3	LED Backlight K3 terminal				
20	LED K4	LED Backlight K4 terminal				
21	NC	Not connection (IM3)				
22	DB4	Data Bus Bit 4 Contract to IC Data Bus Bit 4				
23	DB8	Data Bus Bit 10 Contract to IC Data Bus Bit 8				
24	DB9	Data Bus Bit 11 Contract to IC Data Bus Bit 9				
25	DB10	Data Bus Bit 12 Contract to IC Data Bus Bit 10				
26	DB11	Data Bus Bit 13 Contract to IC Data Bus Bit 11				
27	DB12	Data Bus Bit 14 Contract to IC Data Bus Bit 12				
28	DB13	Data Bus Bit 15 Contract to IC Data Bus Bit 13				
29	DB14	Data Bus Bit 16 Contract to IC Data Bus Bit 14				
30	DB15	Data Bus Bit 17 Contract to IC Data Bus Bit 15				
31	/RESET	Reset pin. Setting either pin low initializes the LSI.				
32	VCI	Power supply for Step-up circuit. (VCi=2.8~3.3V)				
33	VCC2	Power supply for I/O circuit				
34	GND	GND-terminal				
35	DB5	Data Bus Bit 5 Contract to IC Data Bus Bit 5				
36	DB6	Data Bus Bit 6 Contract to IC Data Bus Bit 6				
37	DB7	Data Bus Bit 7 Contract to IC Data Bus Bit 7				

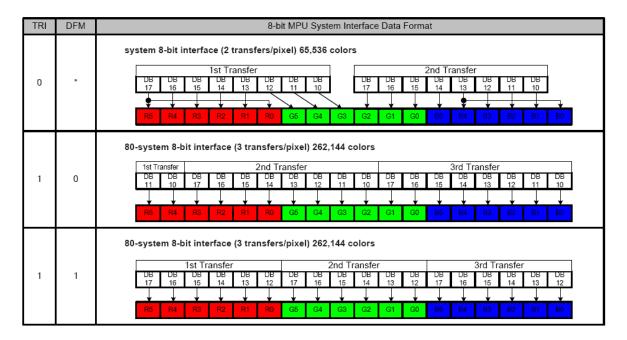

Date: 2006/05/22

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

7.1 80-system 16-bit interface

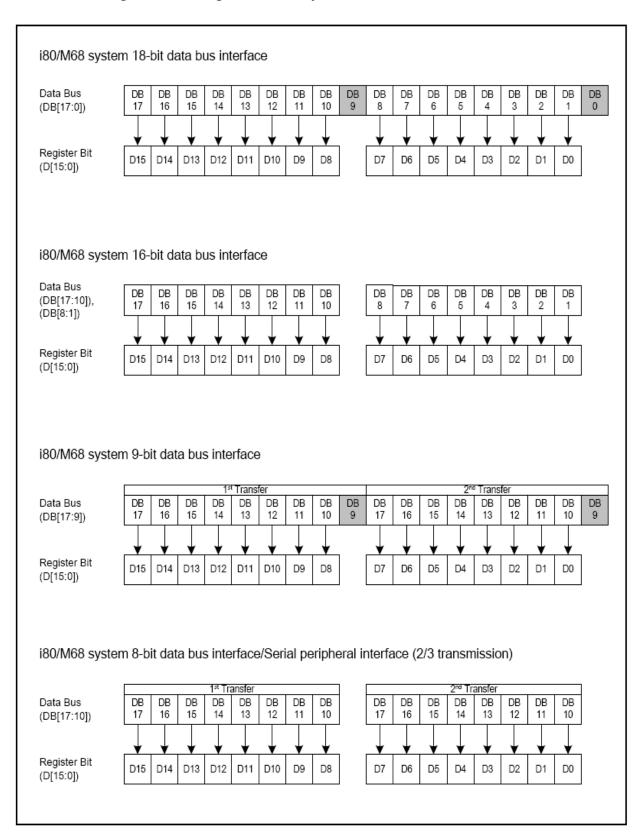
.

The i80/16-bit system interface is selected by setting the IM[3:0] as "0010" levels. The 262K or 65K color can be display through the 16-bit MPU interface. When the 262K color is displayed, two transfers (1st transfer: 2 bits, 2nd transfer: 16 bits or 1st transfer: 16 bits, 2nd transfer: 2 bits) are necessary for the 16-bit CPU interface.

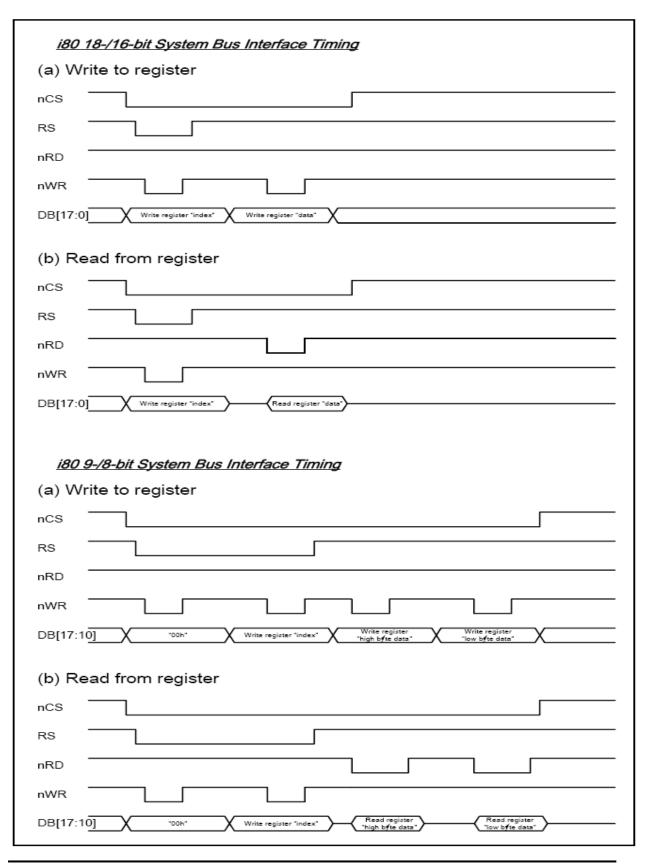

262,144color are available

Date: 2006/05/22

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY


7.2 80-system 8-bit interface

The i80/8-bit system interface is selected by setting the IM[3:0] as "0011" and the DB17~DB10 pins are used to transfer the data. When writing the 16-bit register, the data is divided into upper byte (8 bits and LSB is not used) lower byte and the upper byte is transferred first. The display data is also divided in upper byte (8 bits) and lower byte, and the upper byte is transferred first. The written data is expanded into 18 bits internally (see the figure below) and then written into GRAM. The unused DB[9:0] pins must be tied to either Vcc or AGND.


The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

7.3 Register setting with i80 System Interface

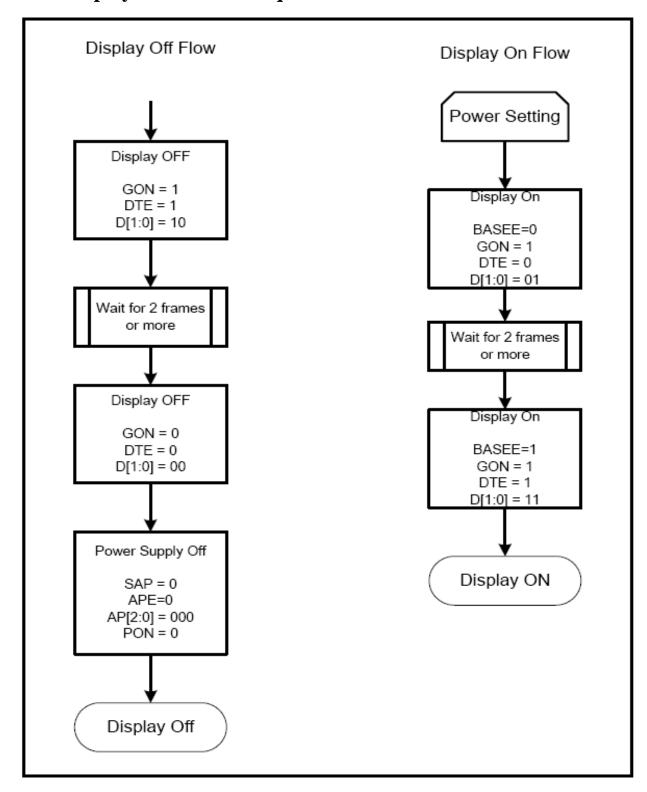
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

7.4 Register Read / Write Timing of i80 System Interface

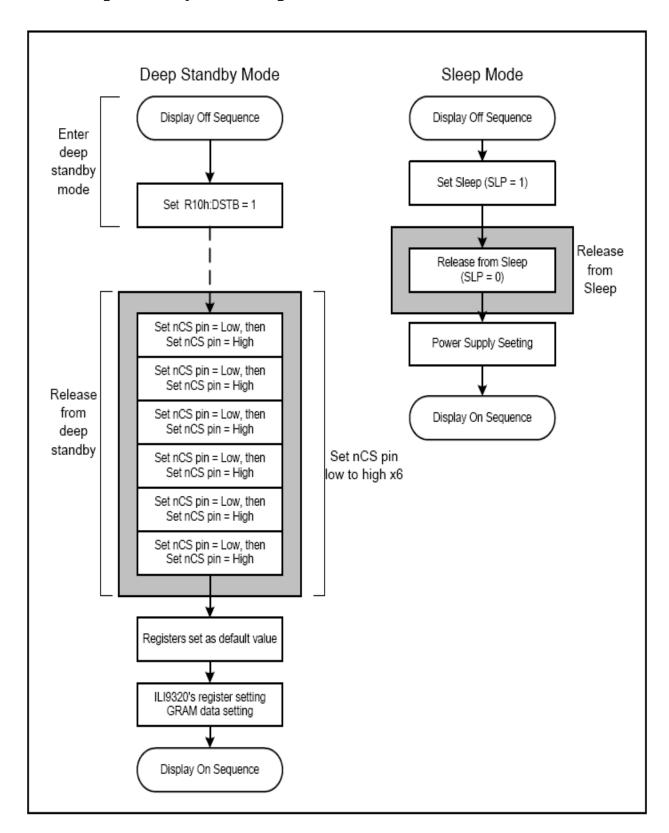
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

7.5 Instruction List

Main LCD Driver IC:ILI920


3Ch	39h	38h	37h	36h	35h	32h	31h	30h	2Bh	29h	22h	21h	20h	13h	12h	1 1	10h	0Fh	d Dh	0Ch	0Ah	09h	08h	07h	04h	03h	02h	01h	00h	00h	SR	≂	No.
Gamma Control 9		Gamma Control 7	Gamma Control 6	Gamma Control 5	Gamma Control 4	Gamma Control 3	Gamma Control 2	Gamma Control 1	Frame Rate and Color Control	Power Control 7	Write Data to GRAM	Vertical GRAM Address Set	20h Horizontal GRAM Address Set	Power Control 4	Power Control 3	Power Control 2	Power Control 1	RGB Display Interface Control 2	Frame Maker Position	RGB Display Interface Control 1	Display Control 4	Display Control 3	Display Control 2	Display Control 1	Resize Control	Entry Mode	LCD Driving Control	Driver Output Control 1	Start Oscillation	Driver Code Read	Status Read	Index Register	Registers Name
\mathbb{N}	Μ	×	W	W	W	≶	W	W	W	M	≶	≶	M	W	8	×	×	W	≶	×	≶	8	≶	8	≶	≶	×	8	×	æ	æ	≶	RW RS
_	_	_	1	1	1	_	_	_	1	_	_	_	_	1	_	<u></u>	_	_	_	_	-	<u></u>	_	-	_	_	_	_	_	_	0	0	RS
0	0	0	0	0	0	0	0	0	0	0	RAM w	0	0	0	0	0	0	0	0	ENC2	0	0	0	0	0	코	0	0		_	L7		D15
0	0	0	0	0	0	0	0	0	0	0	ite dat	0	0	0	0	0	0	0	0	ENC1	0	0	0	0	0	DFM	0	0		0	-6		D14
0	0	0	0	0	0	0	0	0	0	0	RAM write data (WD17-0) / read data (RD17-0) bits are transferred via different data bus lines according to the	0	0	0	0	0	0	0	0	ENC0	0	0	0	PTDE1	0	0	0	0		0	L5		D13
0	0	0	0	VRP1[4]	0	0	0	0	0	0) / read dat	0	0	VDV4	0	0	SAP	0	0	0	0	0	0	PTDE0	0	BGR	0	0		1	L4		D12
0	0	0	0	VRP1[3]	0	0	0	0	0	0	ta (RD17-0	0	0	VDV3	0	0	BT3	0	0	0	0	0	FP3	0	0	0	0	0		0	L3		D11
RN1[2]	KN5[2]	KN3[2]	KN1[2]	VRP1[2]	RP1[2]	KP5[2]	KP3[2]	KP1[2]	0	0)) bits are t	0	0	VDV2	0	DC 12	BT2	0	0	0	0	PTS2	FP2	0	0	0	_	MS		0	[2		D10
RN1[1]	KN5[1]	KN3[1]	KN1[1]	VRP1[1]	RP1[1]	KP5[1]	KP3[1]	KP1[1]	0	0	ransferred	0	0	VDV1	0	DC11	BT1	0	0	0	0	PTS1	FP1	0	RCV1	MWH	B/C	0		_	_		D9
RN1[0]	KN5[0]	KN3[0]	KN1[0]	VRP1[0]	RP1[0]	KP5[0]	KP3[0]	KP1[0]	0	0	via differe	AD16	0	VDV0	VCMR	DC10	BT0	0	FMP8	RM	0	PTS0	FP0	BASEE	RCV0	0	EOR	SS		0	[0		D8
0	0	0	0	0	0	0	0	0	EXT_R	0	nt data bus	AD15	AD7	0	0	0	APE	0	FMP7	0	0	0	0	0	0	ORG	0	0		0	0	ID7	D7
0	0	0	0	0	0	0	0	0	0	0	s lines acc	AD14	AD6	0	0	DC02	AP2	0	FMP6	0	0	0	0	0	0	0	0	0		0	0	8	D6
0	0	0	0	0	0	0	0	0	FR_SEL1	0	ording to t	AD13	AD5	0	0	DC01	AP1	0	FMP5	DM1	0	PTG1	0	GON	RCH1	I/D1	0	0		_	0	D5	D5
0	0	0	0	VRP0[4]	0	0	0	0	FR_SEL0	VCM4	ne selected	AD12	AD4	0	PON	DC00	AP0	VSPL	FMP4	DMO	0	PTG0	0	DTE	RCHO	D0	0	0		0	0	D4	D4
0	0	0	0	VRP0[3]	0	0	0	0	0	VCM3	selected interfaces.	AD11	AD3	0	VRH3	0	0	HSPL	FMP3	0	FMARKOE	ISC3	BP3	CL	0	AM	0	0		0	0	D3	D3
RN0[2]	KN4[2]	KN2[2]	KN0[2]	VRP0[2]	RP0[2]	KP4[2]	KP2[2]	KP0[2]	0	VCM2		AD10	AD2	0	VRH2	VC2	DSTB	0	FMP2	0	FMI2	ISC2	BP2	0	0	0	0	0		0	0	ID2	D2
RN0[1]	KN4[1]	KN2[1]	KN0[1]	VRP0[1]	RP0[1]	KP4[1]	KP2[1]	KP0[1]	0	VCM1		AD9	AD1	0	VRH1	VC1	SLP	PPL	FMP1	RIM1	FMI1	ISC1	뭔	므	RSZ1	0	0	0		_	0	₫	2
RN0[0]	KN4[0]	KN2[0]	-	_	RP0[0]	KP4[0]	KP2[0]	KP0[0]	0	VCMO		AD8	AD0	0	VRH0	VC0	0	EPL	FMP0	RIMO	FMIO	ISC0	BP0	DO	RSZ0	0	0	0	osc	0	0	B	D0

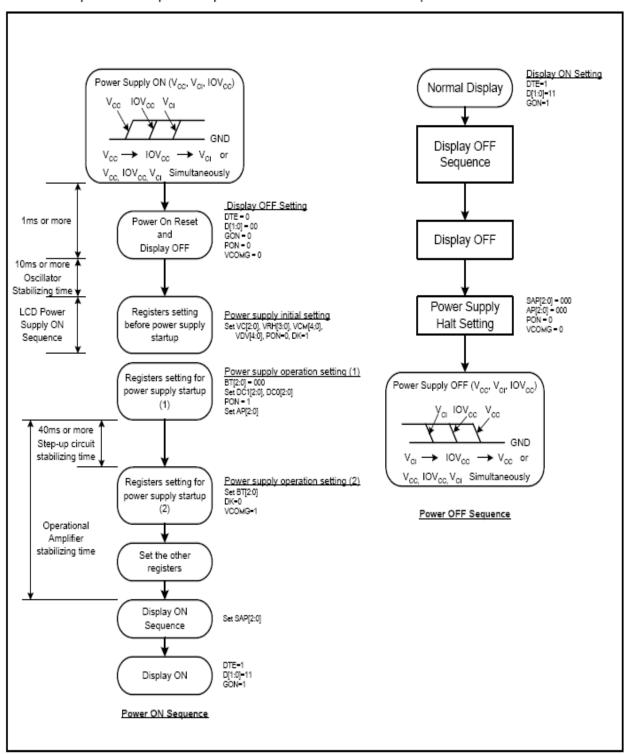
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISLAY


98h	97h	95h	93h	92h	90h	85h	84h	83h	82h	81h	80h	6Ah	61h	60h	53h	52h	51h	50h	3Dh	No.
Panel Interface Control 6	Panel Interface Control 5	Panel Interface Control 4	Panel Interface Control 3	Panel Interface Control 2	Panel Interface Control 1	Partial Image 2 Area (End Line)	Partial Image 2 Area (Start Line)	Partial Image 2 Display Position	Partial Image 1 Area (End Line)	Partial Image 1 Area (Start Line)	Partial Image 1 Display Position	Vertical Scroll Control	Base Image Display Control	Driver Output Control 2	Vertical Address End Position	Vertical Address Start Position	Horizontal Address End Position	50h Horizontal Address Start Position	Gamma Control 10	Registers Name
8	8	8	8	8	W	W	8	8	8	8	W	8	8	W	W	8	8	×	8	RW RS
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	RS
0	0	0	0	0	0	0	0	0	0	0	0	0	0	GS	0	0	0	0	0	D15
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D14
0	0	0	0	0	0	0	0	0	0	0	0	0	0	NL5	0	0	0	0	0	D13
0	0	0	0	0	0	0	0	0	0	0	0	0	0	NL4	0	0	0	0	VRN1[4]	D12
0	NOWE3	0	0	0	0	0	0	0	0	0	0	0	0	NL3	0	0	0	0	VRN1[3]	D11
0	NOWE2	0	0	NOWI2	0	0	0	0	0	0	0	0	0	NL2	0	0	0	0	VRN1[2]	D10
0	NOWE1	DIVE1	0	NOWI1	DIVI1	0	0	0	0	0	0	0	0	NL1	0	0	0	0	VRN1[1]	D9
0	NOWEO	DIVE0	0	NOWIO	DIVI00	PTEA18	PTSA18	PTDP18	PTEA08	PTSA08	PTDP08	VL8	0	NLO	VEA8	VSA8	0	0	VRN1[0]	D8
0	0	0	0	0	0	PTEA17	PTSA17	PTDP17	PTEA07	PTSA07	PTDP07	VL7	0	0	VEA7	VSA7	HEA7	HSA7	0	D7
0	0	0	0	0	0	PTEA16	PTSA16	PTDP16	PTEA06	PTSA06	PTDP06	VL6	0	0	VEA6	VSA6	HEA6	HSA6	0	D6
0	0	RTNE5	0	0	0	PTEA15	PTSA15	PTDP15	PTEA05	PTSA05	PTDP05	VL5	0	SCN5	VEA5	VSA5	HEA5	HSA5	0	D5
0	0	RTNE4	0	0	0	PTEA14	PTSA14	PTDP14	PTEA04	PTSA04	PTDP04	VL4	0	SCN4	VEA4	VSA4	HEA4	HSA4	VRN0[4]	D4
0	0	RTNE3	0	0	RTN13	PTEA13	PTSA13	PTDP13	PTEA03	PTSA03	PTDP03	VL3	0	SCN3	VEA3	VSA3	HEA3	HSA3	VRN0[3]	D3
MCPE2	0	RTNE2	MCPI2	0	RTNI2	PTEA12	PTSA12	PTDP12	PTEA02	PTSA02	PTDP02	VI2	ē	SCN2	VEA2	VSA2	HEA2	HSA2	VRN0[2]	D2
MCPE1	0	RTNE1	MCPI1	0	RTNI1	PTEA11	PTSA11	PTDP12 PTDP11	PTEA01	PTSA01	PTDP01	VL1	ΣE	SCN1	VEA1	VSA1	HEA1	HSA1	VRN0[1]	D1
MCPE0	0	RTNEO	MCP10	0	RTNIO	PTEA10	PTSA10	PTDP10	PTEA00	PTSA00	PTDP00	VL0	REV	SCN0	VEA0	VSA0	HEA0	HSA0	VRN0[0]	D0

8. Application

8.1 Display ON / OFF Sequence

8.2 Deep Standby and Sleep Mode



Date: 2006/05/22

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

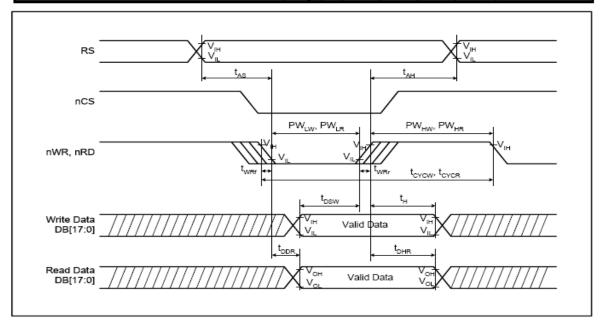
8.3 Power Supply Configuration

When supplying and cutting off power, follow the sequence below. The setting time for oscillators, step-up circuits and operational amplifiers depends on external resistance and capacitance.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

9. Electrical Characteristics

9.1 Clock Characteristics


VCC = 2.40 ~ 3.30V, IOVCC = 1.65 ~ 3.30V

Item	Symbol	Test Condition	Min.	Тур.	Max.	Unit
External Clock Frequency	fcp	VCC = 2.4 ~ 3.3V	450	550	650	KHz
External Clock Duty	f _{Duty}	VCC = 2.4 ~ 3.3V	45	50	55	
External Clock Rising Time	Trcp	VCC = 2.4 ~ 3.3V	,	,	0.2	μs
External Clock Falling Time	Tfcp	VCC = 2.4 ~ 3.3V	,		0.2	μs
RC oscillation clock	fosc	Rf = 100KΩ, VCC = 2.8V	450	550	650	KHz

9.2 AC Characteristics (i80 – system Interface Timing Characteristics)

Normal Write Mode (IOVCC = 1.65~3.3V, VCC=2.4~3.3V)

	Item	Symbol	Unit	Min.	Тур.	Max.	Test Condition
Pue avale time	Write	tcycw	ns	100	-	-	-
Bus cycle time	Read	tcycr	ns	300	-	-	-
Write low-level pu	lse width	PW _{LW}	ns	50	-	500	-
Write high-level po	Write high-level pulse width			50	-	-	-
Read low-level pu	PW _{LR}	ns	150	-	-	-	
Read high-level pu	Read high-level pulse width			150	-	-	
Write / Read rise /	Write / Read rise / fall time			-	-	25	
Catum tima	Write (RS to nCS, E/nWR)	4		10	-	-	
Setup time	Read (RS to nCS, RW/nRD)	tas	ns	5	-	-	
Address hold time	•	tah	ns	5	-	-	
Write data set up t	time	t _{DSW}	ns	10	-	-	
Write data hold tin	Write data hold time			15	-	-	
Read data delay ti	me	t _{DDR}	ns	-	-	100	
Read data hold tin	ne	t _{DHR}	ns	5	-	-	

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

10.QUALITY AND RELIABILITY

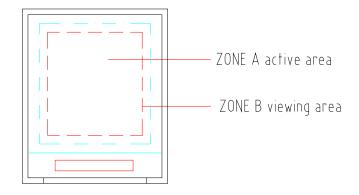
10.1 TEST CONDITIONS

Tests should be conducted under the following conditions:

Ambient temperature : $25 \pm 5^{\circ}$ C Humidity : $60 \pm 25\%$ RH.

10.2 SAMPLING PLAN

Sampling method shall be in accordance with MIL-STD-105E , level II, normal single sampling plan .


10.3 ACCEPTABLE QUALITY LEVEL

A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation.

10.4 APPEARANCE

Date: 2007/05/22

An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under florescent light. The inspection area of LCD panel shall be within the range of following limits.

Date: 2007/05/22

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

11.5 INSPECTION QUALITY CRITERIA

No.	Item	Criterion fo	or defects	Class of Defec	Accept able level
1	Non display	No non display is allowed		Major	0.65
2	Scratch,Dent of Plastic Mold	Serious one is not allowed		Major	0.65
3	Scratch on FPC	By limited sample		Major	0.65
		Item	Number		
	Dat Dafast	Bright dot defect	N ≤ 0	Minor	4.5
4	Dot Defect	Black dot defect	N ≦ 2	Minor	1.5
			_		
5	Line Defect	None		Minor	1.5
6	Uneven Brightness : Line Shape	None		Major	0.65
7	Uneven Brightness : Dot Shape	None		Major	0.65
8	Display pattern			Minor	1.5
9	Scratch of Polarizer :Dot Shape s Size: $D = \frac{A+B}{2}$	Size D (mm) D ≤ 0.1 0.1 < D ≤ 0.3 0.3 < D	Acceptable number Ignore 3 0	Minor	1.5

Date: 2007/05/22

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

10	Scratch of Polarizer : Line Shape	Width (mm) W<0.05 0.1 <w<0.05 0.1<w<="" th=""><th>Length L <u>< 0</u> 0.3 < L -</th><th>).3</th><th>Acceptable number Ignore N≦3. See dot shape</th><th>Minor</th><th>1.5</th></w<0.05>	Length L <u>< 0</u> 0.3 < L -).3	Acceptable number Ignore N≦3. See dot shape	Minor	1.5
11	Bubble in polarizer	Size D (0 D ≤ 0.3 0.30 < D ≤ 0.50 0.50 < D	,	Ac	ceptable number Ignore 1 0	Minor	1.5
12	Stains inclusion : Line shape	Width (mm) W<0.04 0.04 <w<0.06 0.06<w<="" td=""><td>Length Igno L <u><</u> 0</td><td>re</td><td>Acceptable number Not Allowed Not Allowed Not Allowed</td><td>Minor</td><td>1.5</td></w<0.06>	Length Igno L <u><</u> 0	re	Acceptable number Not Allowed Not Allowed Not Allowed	Minor	1.5
13	Stains inclusion : dot shape	Size D (I D ≤ 0.1 0.1 < D ≤ 0.2 0.25< D	mm)	N N	ceptable number lot Allowed lot Allowed lot Allowed	Minor	1.5

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

11.6 RELIABILITY

Test Item	Test Conditions	Note
High Temperature Operation	60±3°C , t=72 hrs	
Low Temperature Operation	-10±3°C , t=72 hrs	
High Temperature Storage	70±3°C , t=72hrs	1,2
Low Temperature Storage	-20±3°C , t=72 hrs	1,2
Humidity Test	40°C , Humidity 90%, 72 hrs	1,2
Thermal Shock Test	-20°C ~ 25°C ~ 70°C 30 min. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2
Vibration Test (Packing)	Sweep frequency: 10~55~10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2
Static Electricity	150pF 330 ohm <u>+</u> 8kV, 10times air discharge <u>+</u> 5kV, 10times contact discharge	

Note 1: Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C , 45-65%RH).

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

12 USE PRECAUTIONS

12.1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

12.2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

12.3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

12.4 Operating precautions

- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

- light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

12.5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.

13. MECHANIC DRAWING

