

AMP DISPLAY INC.

SPECIFICATIONS

3.5-in COLOR TFT MODULE

CUSTOMER:	
CUSTOMER PART NO.	
AMP DISPLAY PART NO.	AM320240L8TNQW-B1H
APPROVED BY:	
DATE:	
	ROVED FOR SPECIFICATIONS ROVED FOR SPECIFICATION AND PROTOTYPES

AMP DISPLAY INC

9856 SIXTH STREET RANCHO CUCAMONGA CA 91730 TEL: 909-980-13410 FAX: 909-980-1419 WWW.AMPDISPLAY.COM

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY.

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2007/11/26	-	New Release	Emil

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

1 Features

3.5 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module. This module is composed of a 3.5" TFT-LCD panel, LCD controller and power driver circuit and backlight unit.

1.1 TFT Panel Feature:

- (1) Construction: 3.5" a-Si color TFT-LCD, White LED / CCFL Backlight and PCB.
- (2) Resolution (pixel): 320(R.G.B) X240
- (3) Number of the Colors: 262K colors (R, G, B 6 bit digital each)
- (4) LCD type: Transmissive Color TFT LCD (normally White)
- (5) Interface: 40 pin pitch 0.5 FFC
- (6) Power Supply Voltage: 3.3V single power input. Built-in power supply circuit.

(7) Build-in Touch Panel Controller (TSC2046).

1.2 LCD Controller Feature:

- (1) MCU interface: 16 bit 80 series MCU interface.
- (2) Display RAM size: 640x240x3x6 bits. Ex: 320x240 two frame buffer with 262K colors.
- (3) Arbitrary display memory starts position selection.
- (4) 16 bit interface support 65K (R5 G6 B5) Color.

2 Physical specifications

Item	Specifications	Unit
Display resolution(dot)	960 (W) x 240(H)	dot
Active area	70.08(W) x 52.56(H)	mm
Screen size	3.5(Diagonal)	mm
Pixel size	73 (W) x 219 (H)	um
Color configuration	R.G.B stripe	
Overall dimension	77.8(W)x64.5(H) x5.85(D)	mm
Weight	T.B.D	g
Backlight unit	LED	

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

3 Electrical specification

3.1 Absolute max. ratings

3.1.1 Electrical Absolute max. ratings

Item	Symbol	Condition	Min.	Max.	Unit	Remark
Power voltage	VDD	VSS=0	-0.3	5.5	V	
Input voltege	V _{in}		-0.3	VDD+0.3	V	Note 1

Note1: /CS,/WR,/RD,RS,DB0~DN17

3.1.2 Environmental Absolute max. ratings

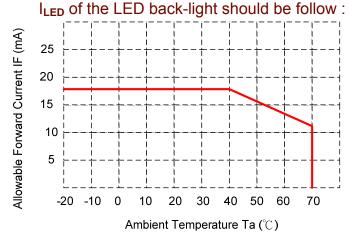
_	OPERATING		STORAGE		
Item	MIN	MAX	MIN	I MAX	Remark
Temperature	-20	70	-30	80	Note2,3,4,5,6,7
Humidity	No	Note1		te1	
Corrosive Gas	Not Acc	eptable	Not Acceptable		

Note1: Ta <= 40°C: 85% RH max

Ta > 40° C : Absolute humidity must be lower than the humidity of 85%RH at 40° C

Note2 : For storage condition Ta at -30° C < 48h , at 80° C < 100h For operating condition Ta at -20° C < 100h

Note3: Background color changes slightly depending on ambient temperature. This phenomenon is reversible.


Note4: The response time will be slower at low temperature.

Note5 : Only operation is guarantied at operating temperature. Contrast , response time, another display quality are evaluated at +25°C

Note6:

Date: 2007/11/26

• LED BL: When LCM is operated over 40°C ambient temperature, the

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

Note7 : This is panel surface temperature, not ambient temperature. Note8 :

• LED BL: When LCM be operated over than 40°C, the life time of the LED back-light will be reduced.

3.1.3 LED back-light Unit Absolute max. ratings

Item	Symbol	Ratings	Unit	Remark
Peak forward Current	IF	60	mA	
Reverse Voltage	VR	15	V	
Power Dissipation	Ро	0.9	W	

3.2 Electrical characteristics

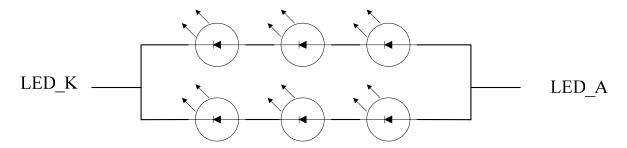
3.2.1 DC Electrical characteristic of the LCD

Typical operting conditions (VSS=0V)

Item	Symbol	Min.	Тур.	Max.	Unit	Remark		
Power supp	ly	VDD	3.0	3.3	5.0	V		
Input Voltage	H Level	V _{IH}	2.0	1	5.5	٧	Note 1	
for logic	L Level	V _{IL}	VSS	ı	0.8	V	Note 1	
Output Voltage for Logic	H Level	V _{OH}	2.4	-	VDD	V	Note 2	
	L Level	V _{OL}	VSS		0.4	V	Note 2	
Power Supply c	IDD	-	320	-	mA	Note 3		

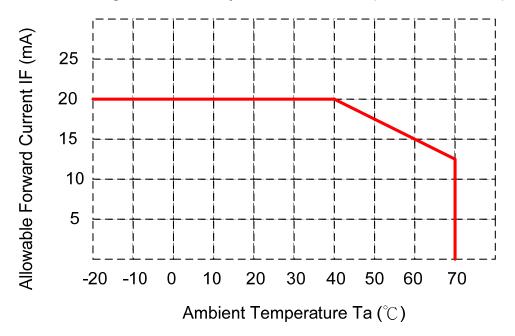
Note1: With 5V Tolerance Input, /CS, /WR,/RD,RS,DB0~DB17

Note2: DB0~DB17

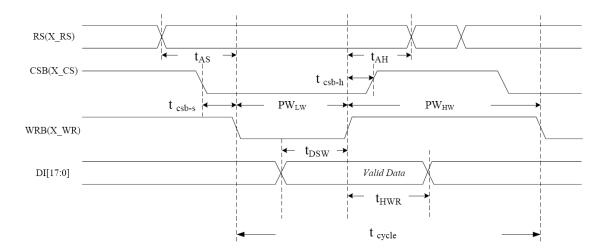

Date: 2007/11/26

Note3: fV =60Hz, Ta=25°C, Display pattern: All Black

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY


3.2.2 Electrical characteristic of LED Back-light

				_		
Paramenter	Symbol	Min.	Тур.	Max.	Unit	Condiction
LED voltage	V_{AK}	9.0	-	11.0	V	I _{LED} =40,Ta=25°C
LED forward current	I _{LED}		40	1	mA	Ta=25°C
LED forward current	I _{LED}		30		mA	Ta=60°C
Lamp life time			T.B.D.	-	Hr	I _{LED} =40mA,Ta=25°C



■ The constant current source is needed for white LED back-light driving.

When LCM is operated over 60°C ambient temperature, the I_{LED} of the LED back-light should be adjusted to 15mA max(For one dice LED).

3.3 AC Timing characteristic of the Graphic TFT LCD controller

Symbol	Parameter	Min	Тур	Max	Unit	Remark
tcycle	Enable cycle time	100	200		ns	
PW HW	Enable high-level pulse width	66	70		ns	
PW LW	Enable low-level pulse width	33	130		ns	
tas	RS setup time	16	25		ns	
tan	RS hold time	16	45		ns	
tosw	Write data setup time	50	50		ns	
thwr	Write data hold time	50	40		ns	
tcsb-s	CSB setup time	16	20		ns	
tcsb-h	CSB hold time	16	30		ns	

4 Optical specification

4.1 Optical characteristic:

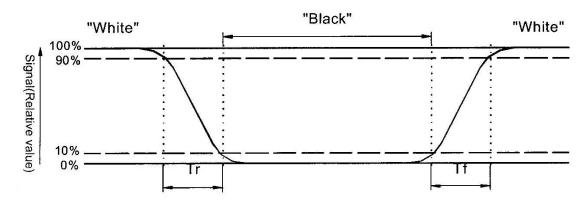
Iten	n	Symbol	Conditon	Min.	Тур.	Max.	Unit	Remark
Response Time	Rise+ Fall	T _r +T _f	⊖=0°		25	40	ms	Note 1,2,3,5
Contras	t ratio	CR	At optimized viewing angle	200	300	-		Note 1,2,4,5
Viewing Angle	Top Bottom Left Right		CR≧10	1 1 1	35 55 70 70	- - -	deg.	Note1,2, 5,6
LĔD	Brightness LED BL Without TP		I _{LED} =40mA ,25℃	330	350	-	cd/ m²	Note 7
Red chror	maticity	XR YR		T.B.D. T.B.D.	T.B.D.	T.B.D.		Note 7
Green chro	Green chromaticity		⊖=0°	T.B.D. T.B.D.	T.B.D.	T.B.D. T.B.D.		For reference only. These
Blue chromaticity		XB YB	⊖=0°	T.B.D.	T.B.D.	T.B.D.		data should be update according the
White chro	maticity	XW YW		T.B.D.	T.B.D.	T.B.D.		prototype.

() For reference only. These data should be update according the prototype.

Note 1:

 LED BL :Ambient temperature=25[°]C, and lamp current I_{LED}=40mA. To be measured in the dark room.

Note 2:To be measured on the center area of panel with a viewing cone of 1°by Topcon luminance meter BM-7,after 10 minutes operation.


Note 3. Definition of response time:

Date: 2007/11/26

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (falling time) and from "white" to "black"

(rising time),respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

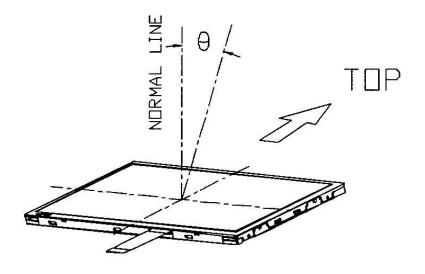
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

Note 4. Definition of contrast ratio:

Contrast ratio is calculated with the following formula.

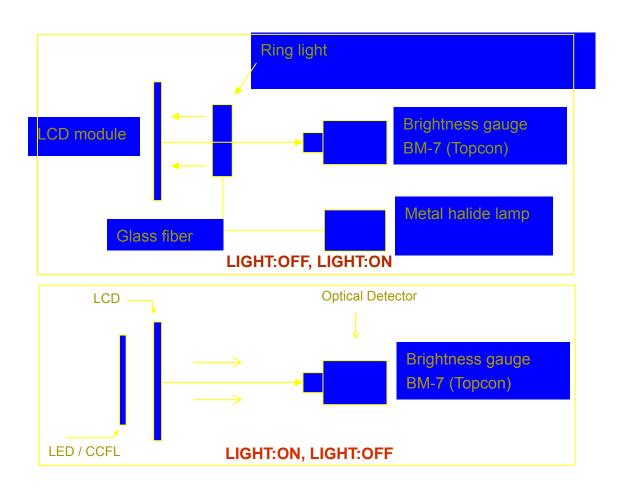
Contrast ratio(CR)= Photo detector output when LCD is at "White" state
Photo detector Output when LCD is at "Black" state

Note 5:White $V_i=V_{i50}+1.5V$ Black $V_i=V_{i50}+2.0V$


Date: 2007/11/26

"±"means that the analog input signal swings in phase with V_{COM} signal.

"- " means that the analog input signal swings out of phase with V_{COM} signal.

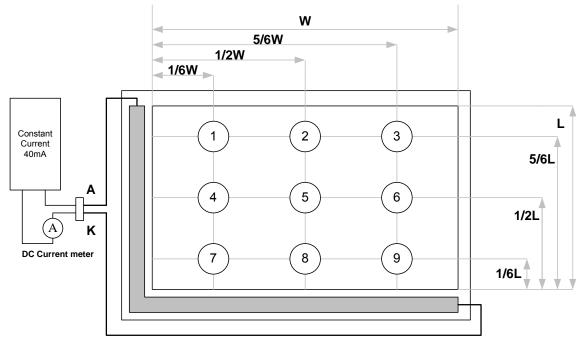

 V_{i50} : The analog input voltage when transmission is 50%. The 100% Transmission is defined as the transmission of LCD panel when all the Input terminals of module are electrically opened.

Note 6.Definition of viewing angle, Refer to figure as below.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

Note 7.Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY


4.2 Optical characteristic of the LED Back-light

ITEM	MIN	TYP	MAX	UNIT	Condition
Bare Brightness	-	T.B.D.		Cd/m2	I _{LED} =40mA,Ta=25°C
AVG. X of 1931 C.I.E.	0.26	0.30	0.34		I _{LED} =40mA,Ta=25°C
AVG. Y of 1931 C.I.E.	0.27	0.31	0.35		I _{LED} =40mA,Ta=25°C
Brightness Uniformity	75			%	I _{LED} =40mA,Ta=25°C

()For reference only. These data should be update according the prototype.

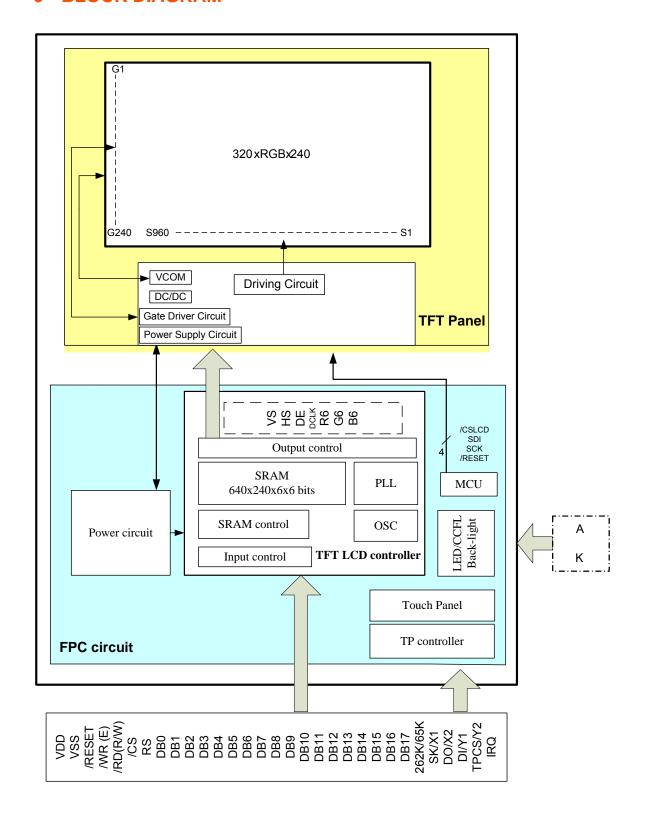
Note1: Measurement after 10 minutes from LED BL operating.

Note2: Measurement of the following 9 places on the display.

Note3: The Uniformity definition (Min Brightness / Max Brightness) x 100%

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

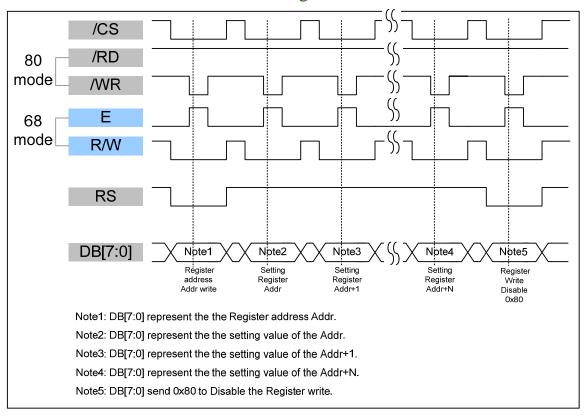
5 Interface specifications

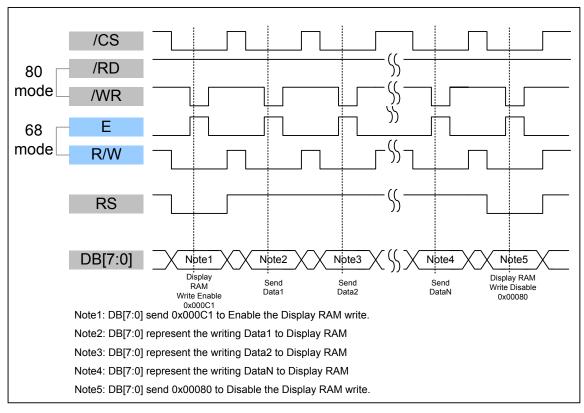

DGND	Pin no	Symbol	I/O	Description	Remark
2	1	•		CND	
A	2	DGND	_		
S	3	LED_A/PWM	-	LED Anode/LED dimming control(with LED driver IC).	
Register and Data select for TFT LCD controller.	4	LED_K	-	LED Cathode	
7	5	/RESET		Reset signal for TFT LCD controller.	
8		RS		Register and Data select for TFT LCD controller.	
Semode: E signal latch on rising edge.	7	/CS506	I	Chip select low active signal for TFT LCD controller.	
10	8	/WR	I		
10	9	/RD	1		
12	10	DB0	I		
13	11	DB1			
14		DB2			
15	13	DB3	I		
16	14	DB4			
17	15	DB5			
18	16	DB6	- 1		
19	17	DB7	- 1		
19 DB9 I 20 DB10 I 21 DB11 I 22 DB12 I 23 DB13 I 24 DB14 I 25 DB15 I 26 DB16 I 27 DB17 I 28 262K/65K I Hi=262 K Color Mode; Lo: 65 K Color Mode. 29 DGND - GND 30 SK I Serial clock for Touch panel controller/ 31 DO I Data Output for Touch panel controller/ 32 DI I Data In for Touch panel controller/ 33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.	18	DB8	I	Data hua	
21 DB11 I 22 DB12 I 23 DB13 I 24 DB14 I 25 DB15 I 26 DB16 I 27 DB17 I 28 262K/65K I Hi=262 K Color Mode; Lo: 65 K Color Mode. 29 DGND - GND 30 SK I Serial clock for Touch panel controller/ 31 DO I Data Output for Touch panel controller/ 32 DI I Data In for Touch panel controller/ 33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.	19	DB9	I	Data bus.	
22 DB12 I 23 DB13 I 24 DB14 I 25 DB15 I 26 DB16 I 27 DB17 I 28 262K/65K I Hi=262 K Color Mode; Lo: 65 K Color Mode. 29 DGND - GND 30 SK I Serial clock for Touch panel controller/ 31 DO I Data Output for Touch panel controller/ 32 DI I Data In for Touch panel controller/ 33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.	20	DB10	I		
DB13 I DB14 I DB15 I DB15 I DB16 I DB17 I BRIT I BRIT I Serial clock for Touch panel controller/ DD1 I Data In for Touch panel controller/ TPCS I Chip Select for Touch panel controller/ Interrupt for Touch panel controller/ Interrupt for Touch panel controller/	21	DB11	Ι		
24 DB14 I 25 DB15 I 26 DB16 I 27 DB17 I 28 262K/65K I Hi=262 K Color Mode; Lo: 65 K Color Mode. 29 DGND - GND 30 SK I Serial clock for Touch panel controller/ 31 DO I Data Output for Touch panel controller/ 32 DI I Data In for Touch panel controller/ 33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.	22	DB12	Ι		
25 DB15 I 26 DB16 I 27 DB17 I 28 262K/65K I Hi=262 K Color Mode; Lo: 65 K Color Mode. 29 DGND - GND 30 SK I Serial clock for Touch panel controller/ 31 DO I Data Output for Touch panel controller/ 32 DI I Data In for Touch panel controller/ 33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.	23	DB13	Ι		
26 DB16 I 27 DB17 I 28 262K/65K I Hi=262 K Color Mode; Lo: 65 K Color Mode. 29 DGND - GND 30 SK I Serial clock for Touch panel controller/ 31 DO I Data Output for Touch panel controller/ 32 DI I Data In for Touch panel controller/ 33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.	24	DB14	I		
27 DB17 I 28 262K/65K I Hi=262 K Color Mode; Lo: 65 K Color Mode. 29 DGND - GND 30 SK I Serial clock for Touch panel controller/ 31 DO I Data Output for Touch panel controller/ 32 DI I Data In for Touch panel controller/ 33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.	25	DB15	- 1		
28 262K/65K I Hi=262 K Color Mode; Lo: 65 K Color Mode. 29 DGND - GND 30 SK I Serial clock for Touch panel controller/ 31 DO I Data Output for Touch panel controller/ 32 DI I Data In for Touch panel controller/ 33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.		DB16	I		
29 DGND - GND 30 SK Serial clock for Touch panel controller/ 31 DO Data Output for Touch panel controller/ 32 DI Data In for Touch panel controller/ 33 TPCS Chip Select for Touch panel controller/ 34 IRQ Interrupt for Touch panel controller.		DB17	I		
30 SK I Serial clock for Touch panel controller/ 31 DO I Data Output for Touch panel controller/ 32 DI I Data In for Touch panel controller/ 33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.		262K/65K	I	,	
31 DO I Data Output for Touch panel controller/ 32 DI I Data In for Touch panel controller/ 33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.	29	DGND	_		
32 DI I Data In for Touch panel controller/ 33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.	30	SK	1	Serial clock for Touch panel controller/	
33 TPCS I Chip Select for Touch panel controller/ 34 IRQ I Interrupt for Touch panel controller.	31	DO	I	Data Output for Touch panel controller/	
34 IRQ I Interrupt for Touch panel controller.	32	DI	I	Data In for Touch panel controller/	
	33	TPCS	I	Chip Select for Touch panel controller/	
	34	IRQ	I	Interrupt for Touch panel controller.	
00-01 VDD - FOWE SUPPLY TOLLIF TOUTS (3.3V).	35-37	VDD	_	Power supply for the logic (3.3V).	
38-40 DGND - GND.	-				

29~34 : SK, DO, DI, CS, IRQ for Touch Panel controller TSC2046/

X1, X2, Y1, Y2 for Touch Panel (without TSC2046)

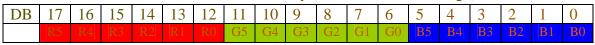
The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY


6 BLOCK DIAGRAM


The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

7 Interface Protocol

7.1 8Bit-80/68- Write to Command Register


7.2 8Bit-80/68-Write to Display RAM

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

7.3 Data transfer order Setting

7.3.1 18 bit interface 262K color only (Pin12 65K/262K =High)

7.3.2 16 bit interface 65K color (Pin12 65K/262K =Low)

DB	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		R3		R1	R0	G5	G4	G3	G2	G1	G0	B4	B3	B2	B1	B0

7.3.3 16 bit interface 262K color (Pin12 65K/262K =High)

											_	·				
DB	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 st data	X	X	X	X	X	X	X	X	X	X	X	X	X	X	R5	<u>R4</u>
2 nd data	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0					B1	B0

7.3.4 9 bit interface 262K color only (Pin12 65K/262K =High)

DB	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 st data	X	X	X	X	X	X	X			R3		R1	R0	G5	G4	G3
2 nd data	X	X	X	X	X	X	X	G2	G1	G0						

7.3.5 8 bit interface 65K color (Pin12 65K/262K =Low)

DB	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 st data	X	X	X	X	X	X	X	X	R4	R3	R2	R1	R0	G5	G4	G3
2 nd data	X	X	X	X	X	X	X	X	G2	G1	G0					

7.3.6 8 bit interface 262K color (Pin12 65K/262K =High)

DB	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1 st data	X	X	X	X	X	X	X	X								R4
2 nd data	X	X	X	X	X	X	X	X	R3	<u>R2</u>	R1	R0	G5	G4	G3	G2
3 rd data	X	X	X	X	X	X	X	X	G1	G0	B5	<u>B4</u>	B3	B2	B1	<u>B0</u>

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

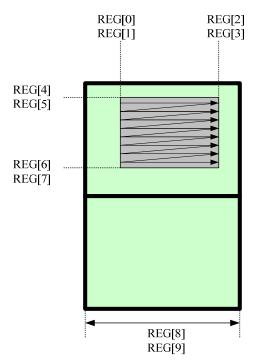
8 Register Depiction

	1						1	1	, ,	i			
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
00	00		<u> </u>	MSB of	X-axis	start r	osition						
Description	set the ho	rizonta							ı				
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
01	00			LSB of	X-axis	start p	osition						
Description	set the ho	rizonta	ıls starl	position	on of di	isplay a	active r	egion					
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
02	01			MSB o	f X-axis	s end p	osition						
Description	set the ho	orizonta	ls end	positio	n of dis	splay a	ctive re	egion					
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
03	3F			LSB of	X-axis	end p	osition						
Description	set the ho	t the horizontals end position of display active region											
Register Address (Hex)	Default (Hex)	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark											
04	00		ľ	MSB of	Y-axis	start p	osition)					
Description	set the ve	ertical s							Į.				
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
05	00			LSB of									
Description	Set the ve	ertical s	tart po	sition c	of displa	ay activ	ve regi	on					
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
06	00	I I											
Description	set the ve	the vertical end position of display active region											
Register Address (Hex)	Default (Hex)	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark LSB of Y-axis end position											
07	EF					•							
Description	Set the ve	ertical e	end pos	sition o	f displa	ıy activ	e regio	n					

To simplify the address control of display RAM access, the window area address function allows for writing data only within a window area of display RAM specified by registers REG[00]~REG[07].

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

After writing data to the display RAM, the Address counter will be increased within setting window address-range which is specified by


MIN X address (REG[0] & REG[1])

MAX X address (REG[2] & REG[3])

MIN Y address (REG[4] & REG[5])

MAX Y address (REG[6] & REG[7])

Therefore, data can be written consecutively without thinking the data address.

Date: 2007/11/26

Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
08	01	X	X	X	X	X	X	_Panel	IXSize te[1:0]				
Description	Set the p	anel X	size										
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
09	40		_PanelXSize L_Byte[7:0]										
Description	Set the p	anel X	size			-							

The register REG[08] and REG[09] is use to calculate the RAM address. If you want to use the TFT as Landscape mode (320x240), the REG[08] & RGE[09] must set to 320. If you want to use the TFT as Portrait mode (240x320), the REG[08] & RGE[09] must set to 240.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark
0A	00	X	X	X	X	X	mem	:16] bit ory write addres:	e start	
Description	Memory	write start address								
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark
0B	00		[15:8]	bits of	memo	ry write	start a	ddress		
Description	Memory	write st	art add	dress						
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark
0C	00		[7:0]	bits of	memor	y write s	start ac	Idress		
Description	Memory	write st	art add	dress						

Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x10	0x0D	Bit_SWAP	OUT_TEST	BUS	_SEL	Blanking	P/S_SEL	CLK	_SEL				
Description	are for se	elect the T	O]" : The T FFT panel o Mhz O2: 5	dot clo			40Mhz F	LL clo	ck. The	ese bits			
	These bi	•											
	0 : OFF	0 : serial Panel 1: Parallel panel "0x10_blanking_tmp[3]" 0 : OFF (blanking) 1: ON (normal operation) "0x10_bus_sel[5:4]" : It only for serial Panel											
		1=G, 10=	•	, 101 50									
	"0x10_o	ut_test[6]	" : Self tes	t									
	0 : norm	al operati	on 1: for te	est (don	't use f	or norm	al operat	ion)					
	When se 2c[6:0])	t the bit to	o "1", the	Rout=(Reg 2a	[6:0]) G	out=(Re	g 2b[6:	0]) Bou	ut=(Reg			
	"0x10_b	it_swap[7	']" : 0-norn	nal									

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

Register Address	The defau	ait SCtti	ing is s	untable	101 /	1110202	LTOINI.	טוו נווע	cu to	Houniy	IL.	
_											_	
Address	Default	DD7	DD	· · ·	ND 5	DD 4	DD2	DD2	DD1	DDO	Damanla	
(How)	(Hex)	DB7	DB	00 L	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
(Hex) 0x11	00	X	X			EVEN			_ODD			
UXII	" Even lin				a out		nco or	data bu		of nar	allal	
Description	panel 000: RGE 001: RBG 010: GRE 011: GBR 100: BRG 101: BGR 000: RGE 001: RBG 010: GRE 011: GBR 100: BRG 101: BGR 010: BRG 101: BGR Must Set	eserved	d I panel	l data (out se				Soluci			
Dogistor	Must Set	to uxus) IOF A	V152U2	40N1						Ī	
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB	3 DB	DB1	DB0	Re	mark	
0x12	00					Н	[sync_s	H_Byte	[3:0]			
Description	For TFT of Hsync state The defau	art posi	tion Ŭ-	Byte	for A	M3202	240N1.	Don't ne	eed to	modify	it.	
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB	3 DB2	DB1	DB0	Re	mark	
0x13	00			Hs	nc_st	L_Byt	e[7:0]					
Description	For TFT of Hsync state The defau	art posi	tion Ľ-l	3yte	for A	M3202	240N1.	Don't ne	eed to	modify	it.	
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB	3 DB2	DB1	DB0	Re	mark	
0x14	00					H	sync_pv	vH_Byte	[3:0]			
Description	O0 Hsync_pwH_Byte[3:0] For TFT output timing adjust: Hsync pulse width H-Byte The default setting is suitable for AM320240N1. Don't need to modify it.											
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4			DB1	DB0	Re	mark	
0x15	10					L_By	te[7:0]					
Description	For TFT o		iming a th L-By									

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

to any third p	The defai								ed to n	nodify it.			
Register			<u> </u>		_					,			
Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x16	00					Ha	ct_stH_	Byte[3	3:0]				
Description	For TFT of DE pulse The defar	start p	osition	H-Byte		32024	0N1. D	on't ne	ed to n	nodify it.			
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x17	38				ct_stL_	Byte[7	:0]						
Description	For TFT of DE pulse The defail	start p	osition	L-Byte		32024	0N1. D	on't ne	ed to n	nodify it.			
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x18	01					Hac	ct_pwH	_Byte[3:0]				
Description	DE pulse	For TFT output timing adjust: DE pulse width H-Byte The default setting is suitable for AM320240N1. Don't need to modify it.											
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x19	40			Hac	t_pwL	_Byte[7:0]						
Description	DE pulse	40 Hact_pwL_Byte[7:0] For TFT output timing adjust: DE pulse width L-Byte The default setting is suitable for AM320240N1. Don't need to modify it.											
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x1A	01					Ht	otalH_	Byte[3:	:0]				
Description	For TFT of Hsync tot The defar	al clocl	ks H-B	yte	for AM	32024	0N1. D	on't ne	ed to n	nodify it.			
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x1B	B8			Ht	totalL_	Byte[7:	0]						
Description	For TFT output timing adjust: Hsync total clocks H-Byte The default setting is suitable for AM320240N1. Don't need to modify it.												
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x1C	00					Vsy	nc_stH	_Byte[3:0]				
Description	00 Vsync_stH_Byte[3:0] For TFT output timing adjust: Vsync start position H-Byte The default setting is suitable for AM320240N1. Don't need to modify it.												

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

to any third p	art williout	. uie pri	or writ	ten con	sent or	AMP L	NOPL <i>P</i>	\ I					
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x1D	00			Vsy	nc_stL	_Byte[7:0]						
	For TFT (output t	timing a		-	_ • ·	-		<u>'</u>				
Description	Vsync sta				for AM	32024	0N1. D	on't ne	ed to n	nodify it.			
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x1E	00					Vsyı	nc_pwI	I_Byte	[3:0]				
Description	For TFT of Vsync pu	lse wid	th H-B	yte	for AM	32024	0N1. D	on't ne	ed to n	nodify it.			
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x1F	08			Vsy	nc_pwI	_Byte[[7:0]						
Description	For TFT of Vsync pu	lse wid	th L-By	∕te	for AN	32024	0N1. D	on't ne	ed to n	nodify it.			
Register Address (Hex)	Default (Hex)	(Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark 00 Vact_stH_Byte[3:0] Vact_stH_Byte[3:0]											
0x20	00					Va	ct_stH_	Byte[3	3:0]				
Description	Vertical D	00 Vact_stH_Byte[3:0] For TFT output timing adjust: Vertical DE pulse start position H-Byte The default setting is suitable for AM320240N1. Don't need to modify it.											
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x21	12			Va	ct_stL_	Byte[7	:0]						
Description	For TFT of Vertical Defaute	E puls	e start	positio			0N1. D	on't ne	ed to n	nodify it.			
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark			
0x22	00					Vac	t_pwH	_Byte[:	3:0]				
Description	For TFT output timing adjust: Vertical Active width H-Byte The default setting is suitable for AM320240N1. Don't need to modify it.												
Register Address (Hex)	Default (Hex) DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Remark												
0x23	F0				t_pwL	_Byte[7	/:U]						
Description	For TFT of Vertical A The defar	ctive w	∕idth H	-Byte	for AM	32024	0N1. D	on't ne	ed to n	nodify it.			

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

to any third p	art without	t the pri	or writ	ten con	sent or	AMP L	<i>I</i> ISPLA	I			
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
0x24	01					Vt	otalH_	Byte[3:	[0]		
Description	For TFT of Vertical to The defar	otal wic	dth H-B	yte	for AIV	132024	0N1. D	on't ne	ed to m	nodify it.	
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
0x25	09			V	totalL_	Byte[7:	0]				
Description	Vertical to	For TFT output timing adjust: Vertical total width L-Byte The default setting is suitable for AM320240N1. Don't need to modify it.									
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
26	00	00 X X X X X X Memory read start address									
Description	Memory i	Memory read start address									
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
27	00		[15:8]	bits of	memo	ry write	start a	ddress	3		
Description	Memory r	read sta	art add	ress							
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
28	00		[7:0]	bits of	memor	y write	start a	ddress			
Description	Memory r	read sta	art add	ress							
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
29	00] Reve						
Description	[0] Load effect	output	timing	relate	d settin	g (H sy	nc., V	sync. a	and DE)) to take	
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
0x2A	00	X		_		tternRo					
Description		When " REG[0x10]_out_test[6]" : Self test =1; The Rout data equal to TestPatternRout[6:0]									
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
0x2B	00	X				tternGo					
Description	When " R The Gout						1;				

The contents of this document are confidential and must not be disclosed wholly or in part

to any third part without the prior written consent of AMP DISPLAY

Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
0x2C	00	X		TestPatternBout[6:0]							
Description	When "REG[$0x10$]_out_test[6]": Self test =1;										
Description	The Bout data equal to TestPatternBout[6:0]										

If you set the " $REG[0x10]_{out_test[6]}$ ": Self test =1 , the TFT controller will skip the connect of the display RAM. The Output port will send the REG[2A] , REG[2B], REG[2C] data.

REG[2A]=0x3F REG[2B]=0x00 REG[2C]=0x00

Date: 2007/11/26

REG[2A]=0x00 REG[2B]=0x3F REG[2C]=0x00

REG[2A]=0x00 REG[2B]=0x00 REG[2C]=0x3F

Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2		DB1	DB0	Remark	
0x2D	00	X	X	X	X	[3]	Rising/fa edge[2	_	_ro [1:	tate :0]		
	[3] Outpo 0: TFT P 1: TFT P	OWER	- circui	t OFF	l contr	ol ; TF	T Power (ON/OF	F con	trol		
Rising/falling edge[2]: 0: The RGB out put data are on the Rising edge of the DCLK. Description 1: The RGB out put data are on the Falling edge of the DCLK.												
	_rotate [1:0]: 00 : rotate 0 degree 01 : rotate90 degree 10 : rotate 270 degree 11 : rotate 180 degree											
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB ²	4 DE	33 DB2	DB1	DBO) R	emark	
30	00	X	X	X	X	X		_H byt Offset[
Description	Set the I	Horizon	tal offs	set								
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	4 DE	33 DB2	DB1	DB() R	emark	
31	00				byte 1	H-Offs	et[7:0]					
Description	Set the I	Horizon	tal offs	set	•			1				
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB ²	DE	33 DB2	DB1	DB() R	emark	
32	00	X	X	X	X	X		_H byte V-Offset[3:0]				
Description	Set the \	/ertical	offset									

The contents of this document are confidential and must not be disclosed wholly or in part

to any third part without the prior written consent of AMP DISPLAY

		t tire pri	01 11110	1011 0 0 11	Bellt of	AMP D	DI LII				
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3 -Offset[7	DB2	DB1	DB0	Remark	
33	00										
Description	Set the V	'ertical									
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
34	00	H-def[3:0]									
Description	[3:0] MS	[3:0] MSB of image horizontal physical resolution in memory									
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
35	40			_]	L byte 1	H-def[7:0	0]				
Description	[7:0] LSB	of ima	ge hor	izontal	physic	al resolu	ıtion in	memo	ry		
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
36	01		[7:4	l] Rese	rved		_H by	te V-de	ef[3:0]		
Description	[3:0] MS	SB of in	nage ve	ertical p	ohysica	ıl resolut	tion in i	nemor	У		
Register Address (Hex)	Default (Hex)	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Remark	
37	E0		_L byte V-def[7:0]								
Description	[7:0] LSB	7:0] LSB of image vertical physical resolution in memory									

The total RAM size is 640x240x18bit. The user can arrange the Horizontal ram size by REG[34],REG[35] and the Vertical ram size by REG[36],REG[37].

 $EX: 320x480x18bit \ REG[34] = 0x01 \ , \ REG[35] = 0x40 \ , \ REG[36] = 0x01 \ , \ REG[37] = 0xE0$

EX: 640x240x18bit. REG[34]=0x02, REG[35]=0x80, REG[36]=0x00, REG[37]=0xF0

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

9 Application Note:

```
void main(void)
 Initial_AMP506();
 Full_386SCR(0xf800);
 Full_386SCR(0x07e0);
 Full_386SCR(0x001f);
}
void AMP506_80Mode_Command_SendAddress(BYTE Addr)
{
 SET_nRD;
                         ///RD=1
 CLR_RS;
                         // RS=0
 CLR_CS1;
                         // /CS=0
 CLR_nWRL;
                         ///WR=0
 DB16OUT(Addr);
                         // Data Bus OUT
 SET_nWRL;
                          ///WR=1
 SET_RS;
                          // RS=1
 SET_CS1;
                          // CS=1
 }
void AMP506_80Mode_Command_SendData(BYTE Data)
{
 SET_nRD;
 SET_RS;
 CLR_CS1;
 CLR_nWRL;
 DB16OUT(Data);
 SET_nWRL;
 SET_RS;
 SET_CS1;
 }
void AMP506_Command_Write(uint8 CMD_Address,uint8 CMD_Value)
 AMP506_80Mode_Command_SendAddress(CMD_Address);
 AMP506_80Mode_Command_SendData(CMD_Value);
}
```

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

```
void AMP506_80Mode_16Bit_Memory_SendData(uint16 Dat16bit)
  SET_nRD;
  SET_RS;
  CLR_CS1;
  CLR_nWRL;
  DB16OUT(Dat16bit>>8);
  SET_nWRL;
                                    // Low to High Latch Data to AMP506 Buffer
  SET_CS1;
  SET_nRD;
  SET_RS;
  CLR_CS1;
  CLR_nWRL;
  DB16OUT(Dat16bit);
  SET_nWRL;
                                    // Low to High Latch Data to AMP506 Buffer
  SET_CS1;
}
void Initial_AMP506(void)
  AMP506_Command_Write(0x40,0x12);
                                          /*[7:6] Reserved
                                           [5] PLL control pins to select out frequency range
                                           0: 20MHz ~ 100MHz 1: 100MHz ~ 300MHz
                                           [4] Reserved [3] Reserved
                                           [2:1] Output Driving Capability
                                           00: 4mA 01: 8mA 10: 12mA 11: 16mA
                                           [0] Output slew rate
                                           0: Fast 1: Slow
AMP506_Command_Write(0x41,0x01);
                                          //Set PLL=40Mhz * (0x42) / (0x41)
AMP506_Command_Write(0x42,0x01);
                                          //0x41 [7:6] Reserved [5:0] PLL Programmable pre-divider,
                                           6bit(1~63)
                                          //0x42 [7:6] Reserved [5:0] PLL Programmable loop
                                           divider, 6bit(1~63)
AMP506 Command Write(0x00,0x00);
                                        // MSB of horizontal start coordinate value
AMP506_Command_Write(0x01,0x00);
                                        // LSB of horizontal start coordinate value
```

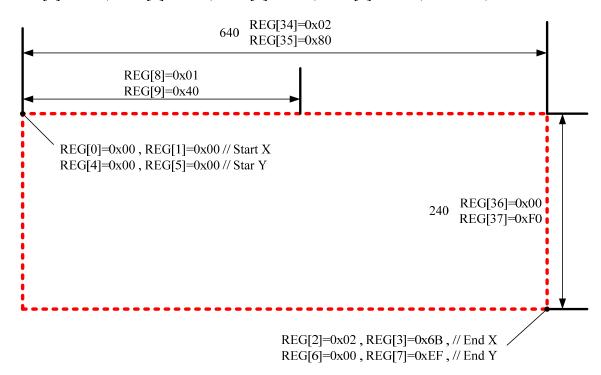
Date: 2007/11/26

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

```
AMP506_Command_Write(0x02,0x01);
                                         // MSB of horizontal end coordinate value
AMP506_Command_Write(0x03,0x3F);
                                         // LSB of horizontal end coordinate value
                                                   // MSB of vertical start coordinate value
          AMP506_Command_Write(0x04,0x00);
          AMP506_Command_Write(0x05,0x00);
                                                    // LSB of vertical start coordinate value
          AMP506_Command_Write(0x06,0x01);
                                                    // MSB of vertical end coordinate value
                                                    // LSB of vertical end coordinate value
          AMP506_Command_Write(0x07,0x3F);
          AMP506_Command_Write(0x08,0x01); // MSB of input image horizontal resolution
          AMP506_Command_Write(0x09,0x40); // LSB of input image horizontal resolution
          AMP506_Command_Write(0x0a,0x00); //[17:16] bits of memory write start address
          AMP506_Command_Write(0x0b,0x00); //[15:8] bits of memory write start address
          AMP506_Command_Write(0x0c,0x00); //[7:0] bits of memory write start address
AMP506_Command_Write(0x10,0x0D); /*[7] Output data bits swap
                                                                    0: Normal 1:Swap
                                        [6] Output test mode enable 0: disable 1: enable
                                        [5:4] Serial mode data out bus selection
                                        00: X_ODATA17 ~ X_ODATA12 active, others are set to zero
                                        01: X_ODATA11 ~ X_ODATA06 active, others are set to zero
                                        10: X_ODATA05 \sim X_ODATA00 active , others are set to zero
                                        11: reserved
                                        [3] Output data blanking
                                        0: set output data to 0 1: Normal display
                                      [2] Parallel or serial mode selection
                                        0: serial data out
                                                               1: parallel data output
                                      [1:0] Output clock selection
                                      00: system clock divided by 2
                                      01: system clock divided by 4
                                      10: system clock divided by 8
                                      11: reserved */
          AMP506 Command Write(0x11,0x05);
      /*[7] Reserved
        [6:4] Even line of serial panel data out sequence or data bus order of parallel panel
                     001: RBG
                                  010: GRB
                                              011: GBR 100: BRG 101: BGR
        [3] Reversed
         [2:0] Odd line of serial panel data out sequence
         000: RGB
                     001: RBG
                                 010: GRB
                                                011: GBR 100: BRG 101: BGR Others: reserved
       AMP506 Command Write(0x12,0x00);
                                                // [3:0] MSB of output H sync. pulse start position
       AMP506_Command_Write(0x13,0x00);
                                                //[7:0] LSB of output H sync. pulse start position
```

```
AMP506_Command_Write(0x14,0x00);
                                              // [3:0] MSB of output H sync. pulse width
      AMP506_Command_Write(0x15,0x10);
                                                  //[7:0] LSB of output H sync. pulse width
      AMP506_Command_Write(0x16,0x00);
                                                  //[3:0] MSB of output DE horizontal start position
      AMP506_Command_Write(0x17,0x38);
                                                  //[7:0] LSB of output DE horizontal start position
   AMP506_Command_Write(0x18,0x01); //[3:0] MSB of output DE horizontal active region in pixel
   AMP506_Command_Write(0x19,0x40);
                                           //[7:0] LSB of output DE horizontal active region in pixel
   AMP506_Command_Write(0x1a,0x01);
                                           //[7:4] Reserved [3:0] MSB of output H total in pixel
   AMP506_Command_Write(0x1b,0xb8);
                                           //[7:0] LSB of output H total in pixel
   AMP506_Command_Write(0x1c,0x00);
                                            //[3:0] MSB of output V sync. pulse start position
   AMP506_Command_Write(0x1d,0x00);
                                            //[7:0] of output V sync. pulse start position
   AMP506_Command_Write(0x1e,0x00);
                                            //[7:4] Reserved [3:0] MSB of output V sync. pulse width
   AMP506_Command_Write(0x1f,0x08);
                                            //[7:0] LSB of output V sync. pulse width
   AMP506_Command_Write(0x20,0x00);
                                            // [3:0] MSB of output DE vertical start position
   AMP506_Command_Write(0x21,0x12);
                                            //[7:0] LSB of output DE vertical start position
   AMP506_Command_Write(0x22,0x00);
                                            // [3:0] MSB of output DE vertical active region in line
   AMP506_Command_Write(0x23,0xf0);
                                             //[7:0] LSB of output DE vertical active region in line
                                            //[7:4] Reversed [3:0] MSB of output V total in line
   AMP506_Command_Write(0x24,0x01);
   AMP506_Command_Write(0x25,0x09);
                                            //[7:0] LSB of output V total in line
   AMP506_Command_Write(0x26,0x00);
                                            // [17:16] bits of memory read start address
   AMP506_Command_Write(0x27,0x00);
                                            //[7:0] [15:8] bits of memory read start address
                                            //[7:0] [7:0] bits of memory read start address
   AMP506_Command_Write(0x28,0x00);
  AMP506_Command_Write(0x29,0x01);
  //[7:1] Reversed [0] Load output timing related setting (H sync., V sync. and DE) to take effect
 AMP506_Command_Write(0x2d,0x08);
                                          /* [7:4] Reserved
                                             [3] Output pin X DCON level control
                                             [2] Output clock inversion 0: Normal 1: Inverse
                                            [1:0] Image rotate
                                             00{:}\ 0^{\circ}\quad 01{:}\ 90^{\circ}\quad 10{:}\ 270^{\circ}\ 11{:}\ 180^{\circ}
 AMP506_Command_Write(0x30,0x00);
                                           //[7:4] Reserved [3:0] MSB of image horizontal shift value
 AMP506_Command_Write(0x31,0x00);
                                           //[7:0] LSB of image horizontal shift value
                                           //[7:4] Reserved [3:0] MSB of image vertical shift value
 AMP506_Command_Write(0x32,0x00);
 AMP506_Command_Write(0x33,0x00);
                                           //[7:0] LSB of image vertical shift value
 AMP506_Command_Write(0x34,0x01);
// [3:0] MSB of image horizontal physical Resolution in memory
 AMP506 Command Write(0x35,0x40);
 //[7:0] LSB of image horizontal physical resolution in memory
```

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY


```
AMP506_Command_Write(0x36,0x01);
//[7:4] Reserved [3:0] MSB of image vertical physical resolution in memory
       AMP506_Command_Write(0x37,0xe0);
//[7:0] LSB of image vertical physical resolution in memory
}
void AMP506_WindowSet(uint16 S_X,uint16 S_Y,uint16 E_X,uint16 E_Y)
{
           AMP506_80Mode_Command_SendAddress(0x00);
           AMP506\_80Mode\_Command\_SendData((S\_X)>>8);
           AMP506_80Mode_Command_SendData(S_X);
           AMP506_80Mode_Command_SendData((E_X-1)>>8);
           AMP506_80Mode_Command_SendData(E_X-1);
           AMP506_80Mode_Command_SendData(S_Y>>8);
           AMP506_80Mode_Command_SendData(S_Y);
           AMP506_80Mode_Command_SendData((E_Y-1)>>8);
           AMP506_80Mode_Command_SendData(E_Y-1);
}
void Full_386SCR(uint16 Dat16bit)
  int32 k,1;
  AMP506_WindowSet(0,0,Resolution_X,Resolution_Y);
  AMP506_80Mode_Command_SendAddress(0xc1); //_DisplayRAM_WriteEnable_
 for(k=0;k<240*2;k++)
   {
    for(l=0;l<320;l++)
     {
         AMP506_80Mode_16Bit_Memory_SendData(Dat16bit);
   }
  AMP506_80Mode_Command_SendAddress(0x80); // DisplayRAM_WriteDisable _
}
```

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AAMP DISPLAY

The TFT LCD controller default value is for AM320240N1 already. So we can start to write our data in a few steps:

Target: To write a 640x240 data to Display RAM and scroll the display data by change the Horizontal offset register.

- 9.1 Step 1: Make sure the interface Protocol.
- 9.2 Step 2: Define the Horizontal ram seize = 640 and Vertical ram size = 240 640x240x18bit. REG[34]=0x02, REG[35]=0x80, REG[36]=0x00, REG[37]=0xF0
- 9.3 Step 3: Define the Panel X Size = 320 REG[8]=0x01, REG[9]=0x40
- 9.4 Step4: Define the Write window. Start=(0,0) End=(619,239)
 REG[0]=0x00, REG[1]=0x00, REG[2]=0x02, REG[3]=0x6B, // Start X, End X
 REG[4]=0x00, REG[5]=0x00, REG[6]=0x00, REG[7]=0xEF, // Star Y, End Y

9.5 Step5: Write the 640x240x18 bit data consecutively

9.6 Step6: The display will show the following image.

9.7 Step7: Change the Horizontal offset to switch or scroll the display data.

Set the Horizontal offset = 160, REG[30]=00 REG[31]=A0. You will see

9.8 Step8: Change the Horizontal offset to switch or scroll the display data.

Set the Horizontal offset = 320, REG[30]=01 REG[31]=40. You will see

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

DISPLAYED COLOR AND INPUT DATA

	Color & Gray								D	ATA S	SIGNA	L							
	Scale	R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B 1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue(0)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(61)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Itteu	Red(31)	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Red(1)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green(61)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Green	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	- :	:
Orecii	Green(31)	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	Green(1)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(0)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Dide	Blue(31)	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	••	:
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(0)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

10 QUALITY AND RELIABILITY

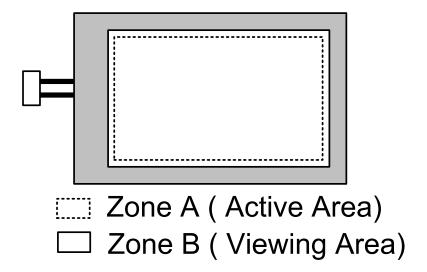
10.1 TEST CONDITIONS

Tests should be conducted under the following conditions:

Ambient temperature : $25 \pm 5^{\circ}$ C Humidity : $60 \pm 25\%$ RH.

10.2 SAMPLING PLAN

Sampling method shall be in accordance with MIL-STD-105E, level II, normal single sampling plan.


10.3 ACCEPTABLE QUALITY LEVEL

A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation.

10.4 APPEARANCE

Date: 2007/11/26

An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under flourescent light. The inspection area of LCD panel shall be within the range of following limits.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

10.5 INSPECTION QUALITY CRITERIA

No.	Item	Criterion fo	or defects	Defect type
1	Non display	No non display is allowed		Major
2	Irregular operation	No irregular operation is allo	owed	Major
3	Short	No short are allowed		Major
4	Open	Any segments or common are rejectable.	patterns that don't activate	Major
5	Black/White spot (I)	Size D (mm) D ≤ 0.15 0.15 < D ≤ 0.20 0.20 < D ≤ 0.30 0.30 < D	Minor	
6	Black/White line (I)	$ \begin{array}{ c c c c } \hline Length(mm) & & & \\ \hline 10 < L & & 0.03 < W \le 0. \\ \hline 5.0 < L \le 10 & 0.04 < W \le 0. \\ \hline 1.0 < L \le 5.0 & 0.06 < W \le 0. \\ \hline L \le 1.0 & 0.07 < W \le 0. \\ \hline \end{array} $	06 3 07 2	Minor
7	Black/White sport (II)	Size D (mm) D ≤ 0.30 0.30 < D ≤ 0.50 0.50 < D ≤ 1.20 1.20 < D	Minor	
8	Black/White line (II)	$ \begin{array}{ c c c c c } \hline Length (mm) & Width (mr) \\ \hline 20 < L & 0.05 < W \le 0. \\ 10 < L \le 20 & 0.07 < W \le 0. \\ \hline 5.0 < L \le 10 & 0.09 < W \le 0. \\ L \le 5.0 & 0.10 < W \le 0. \\ \hline \end{array} $	07 5 09 3 10 2	Minor
9	Back Light	No Lighting is rejectable Flickering and abnormal	lighting are rejectable	Major
10	Display pattern	A Uni	it:mm $\frac{D+E}{2} \le 0.25 \frac{F+G}{2} \le 0.25$ mages	Minor

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

Size D (mm) Acceptable number D < 0.15 D < 0.15 D < 0.30 D		l line part w	unout the prior w.	1111011 00115	<u> </u>				
Size Description Size Description Size Description Descri		Rlemish &							
11 Size: $D = \frac{A+B}{2}$			Size D (n	nm)	Δς	centable number			
Size: $D = \frac{A+B}{2}$ $D = 0.20$ $D = 0.30$ $D =$		1 oreign matters			70				
$D = \frac{A+B}{2} \qquad \begin{array}{ c c c c c } \hline 0.20 < D \leq 0.30 & 2 & 2 & 0 & 0 \\ \hline 0.20 < D \leq 0.30 & 0 & 2 & 0 & 0 \\ \hline 0.20 < D \leq 0.30 & 0 & 2 & 0 & 0 \\ \hline 0.30 < D & 0 & 0 & 0 & 0 \\ \hline \end{array}$	11	Ciro					Minor		
Scratch on Polarizer 12 Scratch on Polarizer Width (mm) Length (mm) Acceptable number Ignore Ig									
Scratch on Polarizer 12 Scratch on Polarizer Width (mm) Length (mm) Acceptable number Ignore Ig		$D = \frac{A+B}{B}$	0.20 < D < 0.30)		2			
12		2	0.30 < D			0			
12									
12									
Polarizer Polarizer			Width (mm)	Length	(mm)	Acceptable number			
12 Polarizer 0.03 <w≤0.05 1="" ignore="" l≤2.0="" td="" ="" <=""><td></td><td></td><td>W<0.03</td><td>lano</td><td>re</td><td>lanore</td><td></td></w≤0.05>			W<0.03	lano	re	lanore			
12		Polarizer				•			
13 Bubble in polarizer D ≤ 0.20 Stains on LCD panel surface contact (poor soldering) 16 Parts mounting Parts alignment Parts alignment C Conductive foreign matter (Solder ball, Solder chips) 18 C Conductive foreign matter (Solder ball, Solder chips) 19 C Conductive foreign matter (Solder ball, Solder chips) 10 C Conductive foreign matter (Solder ball, Solder chips) 10 C Conductive foreign matter (Solder ball, Solder chips) 10 C Conductive foreign matter (Solder ball, Solder chips) 10 C Conductive foreign matter (Solder ball, Solder chips) 11 C C Conductive foreign matter (Solder ball, Solder chips) 12 C C C C C C C 13 C C C C C C C 14 C C C C C C 15 C C C C C C C 16 C C C C C C C 17 C C C C C C C 18 C C C C C C C 19 C C C C C C C C 10 C C C C C C C C 10 C C C C C C C C 11 C C C C C C C C C	12		0.00 <u>111 0</u> .00			1	Minor		
Size D (mm) Acceptable number D ≤ 0.20 Ignore Note (1) Note (1)	12	. A	0.05/11/0.00				IVIIIIOI		
Size D (mm) Acceptable number			0.03~VV <u><</u> 0.06			lanara			
Size D (mm) Acceptable number D ≤ 0.20 Ignore O.20 < D ≤ 0.50 3 3 O.50 < D ≤ 0.80 D ≤ 0.80 D ≤ 0.80 O ≤ 0.80		→ B	0.00.144			_			
13 Bubble in polarizer D ≤ 0.20			Note(1) Regard	as a blemis	h				
13 Bubble in polarizer D ≤ 0.20									
13 Bubble in polarizer D ≤ 0.20			_						
13 polarizer 0.20 < D ≤ 0.50 0.50 < D ≤ 0.80 2 0.80 < D 0					Ac	ceptable number			
13 polarizer 0.20 < D ≤ 0.50 0.50 < D ≤ 0.80 0 0	10	Bubble in	D ≤ 0.20			Ignore	Minor		
Stains on LCD panel surface Stains that cannot be removed even when wiped lightly with a soft cloth or similar cleaning too are rejectable. Minor	13	polarizer	0.20 < D < 0.50			_	IVIIIO		
Stains on LCD panel surface Stains that cannot be removed even when wiped lightly with a soft cloth or similar cleaning too are rejectable. Minor 15 Rust in Bezel Rust which is visible in the bezel is rejectable. Minor 16 Defect of land surface contact (poor soldering) Evident crevices which is visible are rejectable. Minor 17 Parts mounting 1. Failure to mount parts Major 18 Parts alignment 1. LSI, IC lead width is more than 50% beyond pad outline. 18 Parts alignment 1. LSI, IC lead width is more than 50% beyond pad outline. 2 Chip component is off center and more than 50% of the leads is off the pad outline. 1. LSI, IC lead width is more than 50% beyond pad outline. Conductive foreign matter (Solder ball, Solder ball, Solder ball, Solder ball, Solder ball, Solder chips) 1. L45< φ ,N≥1						2			
Stains on LCD panel surface Stains that cannot be removed even when wiped lightly with a soft cloth or similar cleaning too are rejectable. Minor 15 Rust in Bezel Rust which is visible in the bezel is rejectable. Minor 16 Defect of land surface contact (poor soldering) Evident crevices which is visible are rejectable. Minor 17 Parts mounting 1. Failure to mount parts Major Ma				•					
14 LCD panel surface Stains that cannot be removed even when wheed lightly with a soft cloth or similar cleaning too are rejectable. Minor 15 Rust in Bezel Rust which is visible in the bezel is rejectable. Minor 16 Indicated contact (poor soldering) Evident crevices which is visible are rejectable. Minor 17 Parts mounting 1. Failure to mount parts 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Major Major Majo			0.00 \ D	U.0U \ U					
14 LCD panel surface Stains that cannot be removed even when wheed lightly with a soft cloth or similar cleaning too are rejectable. Minor 15 Rust in Bezel Rust which is visible in the bezel is rejectable. Minor 16 Indicated contact (poor soldering) Evident crevices which is visible are rejectable. Minor 17 Parts mounting 1. Failure to mount parts 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Major Major Majo		Otalina an							
LCD patient surface with a soft cloth or similar cleaning too are rejectable. Minor 15 Rust in Bezel Rust which is visible in the bezel is rejectable. Minor 16 Defect of land surface contact (poor soldering) Evident crevices which is visible are rejectable. Minor 17 Parts mounting 1. Failure to mount parts 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Major Major Major Major Major Minor 18 Parts alignment 1. LSI, IC lead width is more than 50% beyond pad outline. Minor 18 Conductive foreign matter (Solder ball, Solder chips) 1. 0.45< φ N≥1 Major Minor			Stains that car	nnot be rei	moved e	ven when wiped lightly			
15 Rust in Bezel Rust which is visible in the bezel is rejectable. Defect of land surface contact (poor soldering) 17 Parts mounting Parts alignment Conductive foreign matter (Solder ball, Solder chips) Conductive Faulty PCB correction Faulty PCB correction Paust in Bezel Rust which is visible in the bezel is rejectable. Minor Major Ma	14						Minor		
Defect of land surface contact (poor soldering) Evident crevices which is visible are rejectable. Minor 17 Parts mounting 1. Failure to mount parts 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Major Maj		surface	With a core closs	with a soft cloth of similar cleaning too are rejectable.					
Defect of land surface contact (poor soldering) Evident crevices which is visible are rejectable. Minor 17 Parts mounting 1. Failure to mount parts 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Major Maj									
	15	Rust in Bezel	Rust which is v	isible in th	e bezel	is rejectable.	Minor		
16 land surface contact (poor soldering) Evident crevices which is visible are rejectable. Minor 17 Parts mounting 1. Failure to mount parts 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Major Minor Major Major Minor Minor Major Minor Minor Minor Major Minor Minor Minor Minor Major Minor M									
16 contact (poor soldering) Evident crevices which is visible are rejectable. Milnor 17 Parts mounting 1. Failure to mount parts 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Major Minor Minor Major Minor M		Defect of							
16 contact (poor soldering) Evident crevices which is visible are rejectable. Milnor 17 Parts mounting 1. Failure to mount parts 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Major Minor Minor Major Minor M	40	land surface							
17 Parts mounting 1. Failure to mount parts 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Major Minor Major Major Major Minor Major Maj	16		Evident crevice	es which is	visible a	are rejectable.	Minor		
17 Parts mounting 1. Failure to mount parts 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed 1. LSI, IC lead width is more than 50% beyond pad outline. 2. Chip component is off center and more than 50% of the leads is off the pad outline. 19 Conductive foreign matter (Solder ball, Solder chips) 10 Conductive foreign matter (Solder ball, Solder chips) 11 Due to PCB copper foil pattern burnout, the pattern is connected, using a jumper wire for repair; 2 or more places are corrected per PCB. 20 Short circuited part is cut, and no resist coating has Major Minor 1. Failure to mount parts Major Minor Minor Minor Major Minor Minor Minor Minor Minor Minor Minor Minor Minor									
17 Parts mounting 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Major Minor Major Minor Major Minor Major Minor Major Major Minor Major Minor Major		30luching)							
17 Parts mounting 2. Parts not in the specifications are mounted 3. Polarity, for example, is reversed Major Minor Major Minor Major Minor Major Minor Major Major Minor Major Minor Major		D4	1. Failure to m	ount parts			Major		
18 Parts alignment 1. LSI, IC lead width is more than 50% beyond pad outline. Minor 19 Conductive foreign matter (Solder ball, Solder chips) 1. 0.45< φ (N≥1)	17				cations a	are mounted	-		
1. LSI, IC lead width is more than 50% beyond pad outline. 2. Chip component is off center and more than 50% of the leads is off the pad outline. 1. LSI, IC lead width is more than 50% beyond pad outline. 2. Chip component is off center and more than 50% of the leads is off the pad outline. 1. 0.45< φ ,N≥1	''	mounting					-		
18 Parts alignment outline. 2. Chip component is off center and more than 50% of the leads is off the pad outline. Minor 19 Conductive foreign matter (Solder ball, Solder chips) 1. 0.45< φ ,N≥1				·			•		
alignment 2. Chip component is off center and more than 50% of the leads is off the pad outline. Conductive foreign matter (Solder ball, Solder chips) 1. $0.45 < \varphi$,N ≥ 1				d width is	more t	han 50% beyond pad	Minor		
2. Chip component is off center and more than 50% of the leads is off the pad outline. 1. 0.45< φ	10	Parts							
the leads is off the pad outline. Conductive foreign matter (Solder ball, Solder chips) 10 Conductive foreign matter (Solder ball, Solder chips) 11. $0.45 < \varphi$, $N \ge 1$	10	alignment	2. Chip compo	nent is of	f center	and more than 50% of	Minor		
Conductive foreign matter (Solder ball, Solder chips) 1. $0.45 < \varphi$,N ≥ 1		, and the second							
Conductive foreign matter (Solder ball, Solder chips) 2. $0.30 < \varphi \le 0.45$, $N \ge 1$ φ : Average diameter of solder ball (unit: mm) 3. $0.50 < L$ \downarrow , $N \ge 1$ \downarrow L: Average length of solder chip (unit: mm) 1. Due to PCB copper foil pattern burnout, the pattern is connected, using a jumper wire for repair; 2 or more places are corrected per PCB. 2. $0.30 < \varphi \le 0.45$, $N \ge 1$ φ : Average diameter of solder ball (unit: mm) Minor Minor Minor Minor							Major		
foreign matter (Solder ball, Solder chips) 19 foreign matter (Solder ball, Solder chips) 2. $0.30 < \phi \le 0.45$, $N \ge 1$ $0.50 < L$ $0.$		Conductive	•	, —					
(Solder ball, Solder chips) Solder chips (Solder ball, Solder chips) (Solder ball (unit: mm) (unit				Minor					
Solder chips) 3. 0.50 <l (unit:="" ,n≥1="" 1.="" 2="" 2.="" a="" and="" are="" average="" burnout,="" chip="" circuited="" coating="" connected,="" copper="" corrected="" cut,="" due="" foil="" for="" has<="" is="" jumper="" l:="" length="" mm)="" more="" no="" of="" or="" part="" pattern="" pcb="" pcb.="" per="" places="" repair;="" resist="" short="" solder="" td="" the="" to="" using="" wire=""><td>19</td><td>_</td><td>φ :Average</td><td></td></l>	19	_	φ :Average						
L: Average length of solder chip (unit: mm) 1. Due to PCB copper foil pattern burnout, the pattern is connected, using a jumper wire for repair; 2 or more places are corrected per PCB. 2. Short circuited part is cut, and no resist coating has Minor			3. 0.50 <l< td=""><td>Minor</td></l<>	Minor					
1. Due to PCB copper foil pattern burnout, the pattern is connected, using a jumper wire for repair; 2 or more places are corrected per PCB. 2. Short circuited part is cut, and no resist coating has Minor		Soluei chips)	(CIIID2)						
Faulty PCB correction connected, using a jumper wire for repair; 2 or more places are corrected per PCB. Short circuited part is cut, and no resist coating has Minor									
places are corrected per PCB. 2. Short circuited part is cut, and no resist coating has Minor						-	Minor		
correction corrected per PCB. 2. Short circuited part is cut, and no resist coating has Minor	000	Faulty PCB					ΙΝΙΙΠΟΓ		
2. Short circuited part is cut, and no resist coating has Minor	20	•			•				
been performed.		23113311311		Minor					
			been perfo	rmed.					

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

			The TFT panel may have bright dot or Dark dot. The acceptable number defection:							
21	Defect Dot	Bright dot	Dark dot	Total dot	Distance between Dark dark		Minor			
		2	3	4	L≧5 mm					

11 Reliability test items:

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C , t=96 hrs	
Low Temperature Operation	-20±3°C , t=96 hrs	
High Temperature Storage	80±3°C , t=96 hrs	1,2
Low Temperature Storage	-30±3°C , t=96 hrs	1,2
Humidity Test	40°C , Humidity 90%, 96 hrs	1,2
Thermal Shock Test	-30°C ~ 25°C ~ 80°C 30 min. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2
Vibration Test (Packing)	Sweep frequency: 10~55~10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2
Static Electricity	150pF 330 ohm ±8kV, 10times air discharge 150pF 330 ohm ±4kV, 10times contact discharge	

Note 1: Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions

(15-35°C, 45-65%RH).

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

12 USE PRECAUTIONS

12.1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

12.2 Installing precautions

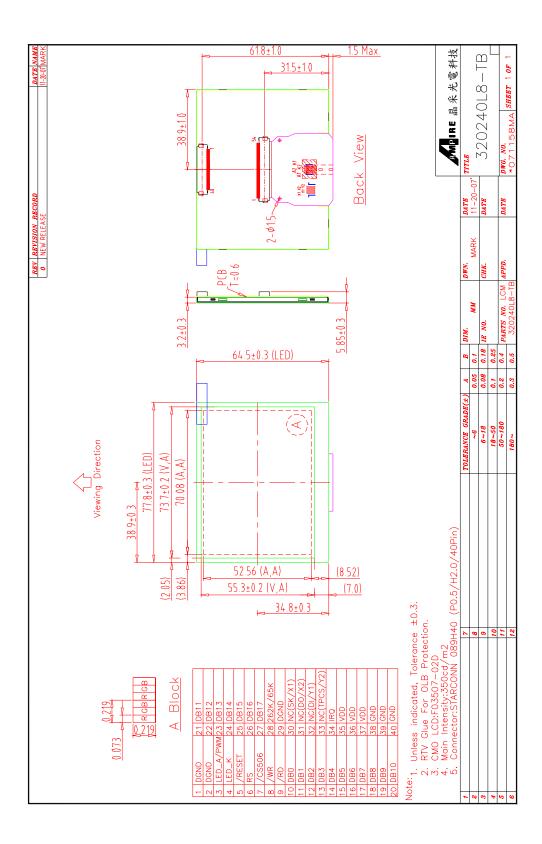
- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

12.3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.

3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

12.4 Operating precautions


- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

The contents of this document are confidential and must not be disclosed wholly or in part to any third part without the prior written consent of AMP DISPLAY

12.5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

13 OUTLINE DIMENSION 13.1 OUTLINE DIMENSION

