

AMP DISPLAY INC.

SPECIFICATIONS

4.3-in COLOR TFT MODULE

CUSTOMER:	
CUSTOMER PART NO.	
AMP DISPLAY PART NO.	AM480272H2TMQW-T00H
APPROVED BY:	
DATE:	

APPROVED FOR SPECIFICATIONS

APPROVED FOR SPECIFICATION AND PROTOTYPES

AMP DISPLAY INC

9856 SIXTH STREET RANCHO CUCAMONGA CA 91730 TEL: 909-980-13410 FAX: 909-980-1419 WWW.AMPDISPLAY.COM

Revision Date	Page	Contents	Editor
2009/4/20		New Release	JOHN

1. FEATURES

- (1) Construction : a-Si TFT-LCD with driving system, White LED Backlight, Touch Panel.
- (2) LCD type : Transmissive , Normally White
- (3) Number of the Colors : 16.7M colors (R,G,B 8 bit digital each)
- (4) RGB Interface 40 pin.
- (5) LCD Power Supply Voltage : 3.3V single power input,

2. PHYSICAL SPECIFICATIONS

Item	Specifications	unit
Display size (diagonal)	4.3	inch
Resolution	480RGB (W) x 272(H)	dots
View area	98.7 (W) x57.5 (H)	mm
Active Area	95.04 (W) x53.856 (H)	mm
Pixel pitch	0.198 (W) x 0.198 (H)	mm
Overall dimension	105.5(W)x114.05(H)x5.05(D)	mm
Color configuration	R.G.B Vertical stripe	
View Direction (Gray Inversion)	6 o'clock	

3. ABSOLUTE MAXIMUM RATINGS

item	Symbol	Values		bol		Unit	Remark
Rom	eymoor	Min	Max	Onic	rtomant		
Power Supply for logic	VCC	-0.3	5.0	V	GND=0		
Operation Temperature (Ambient)	Тор	-20	70	°C			
Storage Temperature (Ambient)	Тѕт	-30	80	°C			
LED Forward current	lf		20	mA	OneLED/Note1		
LED Power Dissipation	Pd		64	mW	One LED		

Note 1: Background color changes slightly depending on ambient temperature. This phenomenon is reversible.

3.1 Power Voltage

item	Symbol	Values		Unit	Remark	
		Min	Тур	Max		
Logic power supply	VCC	2.7	3.0	3.6		

4. OPTICAL CHARACTERISTICS

It	Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Response	Time	Э	T _r +T _f	Θ=Φ=0°	-	40		ms	(3)
Contrast ra	atio		CR	Θ-Φ-0		250	-	-	(1)
Viewing	V	ertical	Θ			90.	-	Dea	(4)
Angle	Но	rizontal	Φ	CR≧10		130	-	Deg.	(4)
Luminance	e		L	Θ=Φ=0°		200	-	cd/m²	(2)
Color		White	Wx	0 7 0	0.25	0.301	0.351		(2)(3)
chromatici	ty	White			0.27	0.339	0.389		(2)(3)

NOTE :

Measure Condition:IL= 20.0mA

Measure Item Definition as follow :

(1)Definition of Contrast Ratio : (Measured by BM-7 (TOPCON) [dark room]) Contrast Ratio (CR)= (White) Luminance of ON ÷ (Black) Luminance of OFF

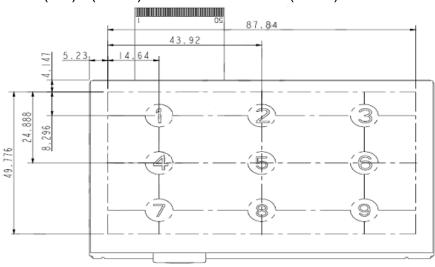
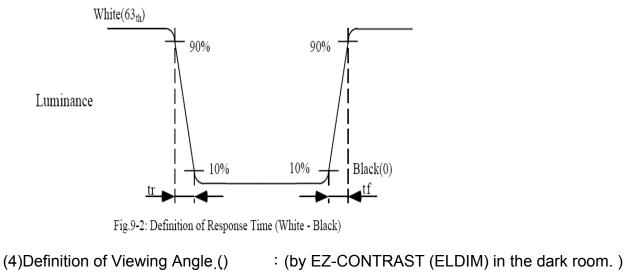
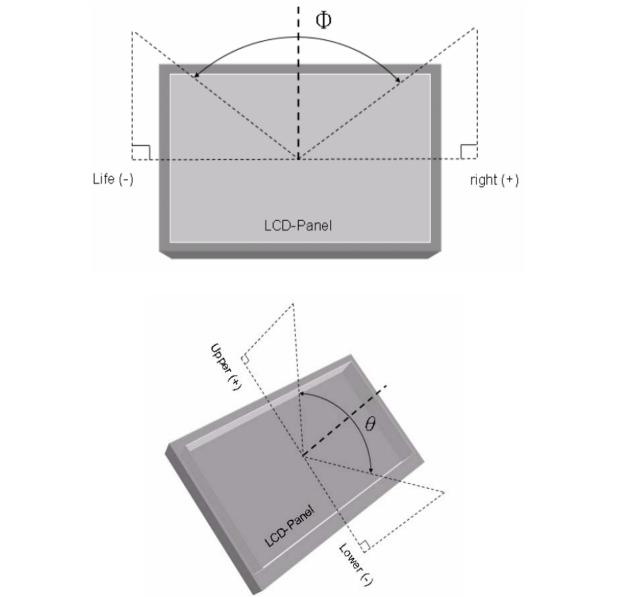


Fig.9-1: Test Point Position


(2) Definition of Center Luminance &Luminance Uniformity : (Measured by BM-7 (TOPCON) [dark room])


Center Luminance : Measure luminance on Point No5 as figure 9-1.

Luminance Uniformity : Measure maximum luminance(L(MAX))and minimum luminance (L(MIN))on the **9** points as figure 9-1.

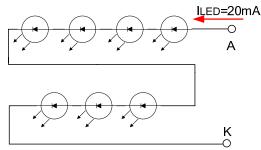
L = [L(MIN)/L(MAX)]×100%

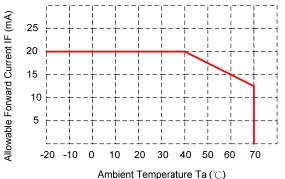
(3) Response Time (White - Black)

5. ELECTRICAL CHARACTERISTICS

5.1 LCD driving

Item		Symbol	Min.	Тур.	Max.	Unit	Note
Power supply voltage		VDD	3.0	3.3	3.6	V	
Input voltage for	H Level	V _{IH}	0.8 VDD		VDD	V	(1)
logic	L Level	V _{IL}	0		0.2 VDD	V	(1)
Power Supply c	Power Supply current			45		mA	(2)


Note 1: Hsync, Vsync, DEN, DCLK, R0~R5, G0~G5, B0~B5


Note 2: fV =60Hz , Ta=25°C , Display pattern : All Black

5.2 LED back light specification

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Forward voltage	V _f	I _f =18mA		23.1		V
Forward current	l _f	7-chip serial	-	18	20	mA
Uniformity (with L/G)	-	l _f =18mA	70%*1	-	-	
Luminous color	White					
Chip connection		7 chip serial connection				

The constant current source is needed for white LED back-light driving. When LCM is operated over 60 deg.C ambient temperature, the I_{LED} of the LED back-light should be adjusted to 15mA max

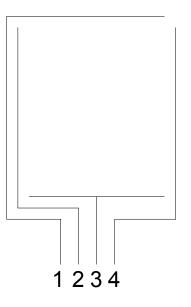
5.3 Pin definition of Backlight

Pin no	Symbol	Function
1	LED_K	LED Cathode
2	NC	Keep NC
3	NC	Keep NC
4	LED_A	LED Anode

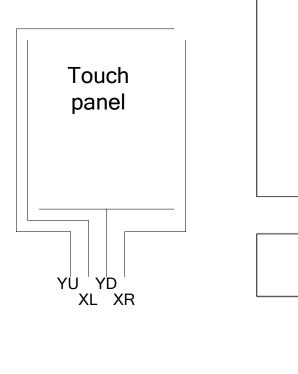
5.4 Touch Panel Electrical Specification

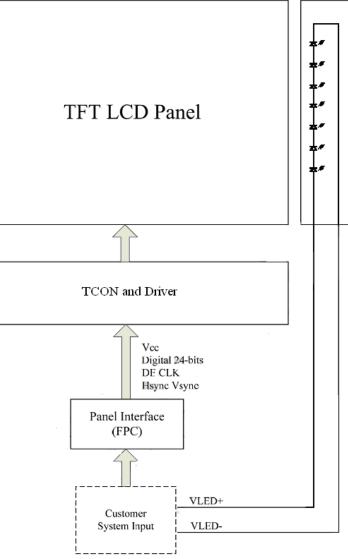
Parameter	Condition	Standard Value
Terminal Resistance	X Axis	800±350 Ω
	Y Axis	350±250 Ω
Insulating Resistance	DC 25 V	More than 20M Ω
Linearity		±1.5 %
Pen Touch Sliding Durability	Note a	100,000 times(min)
Stylus Hitting	Note b	1,000,000 times (min)

Note A.


Writing with R0.8 mm plastic stylus pen ; writing force: 150 g in active area (each direction inside Active area 3mm) Speed is 60mm/sec.

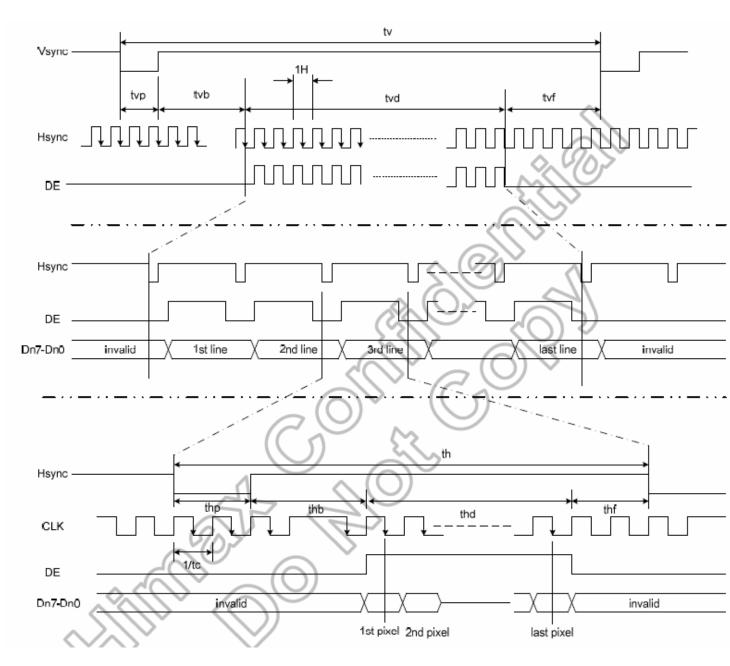
Note B


By Silicon rubber of touch panel active area Shape of rubber end : R8mm Load : 250g Frequency : 240 times/min


Interface

No.	Symbol	Function
1	YU	Touch Panel Top Signal in Y Axis
2	XL	Touch Panel Left Signal in X Axis
3	YD	Touch Panel Bottom Signal in Y Axis
4	XR	Touch Panel Right Signal in X Axis

6. BLOCK DIAGRAM


•

7. TFT LCD Panel FPC Descriptions

Pin no	Symbol	Function
1	GND	Ground
2	GND	Ground
3	VCC	Power Supply(2.5V~3.6V)
4	VCC	Power Supply(2.5V~3.6V)
5	R0	Red Data Bit 0
6	R1	Red Data Bit 1
7	R2	Red Data Bit 2
8	R3	Red Data Bit 3
9	R4	Red Data Bit 4
10	R5	Red Data Bit 5
11	R6	Red Data Bit 6
12	R7	Red Data Bit 7
13	G0	Green Data Bit 0
14	G1	Green Data Bit 1
15	G2	Green Data Bit 2
16	G3	Green Data Bit 3
17	G4	Green Data Bit 4
18	G5	Green Data Bit 5
19	G6	Green Data Bit 6
20	G7	Green Data Bit 7
21	B0	Blue Data Bit 0
22	B1	Blue Data Bit 1
23	B2	Blue Data Bit 2
24	B 3	Blue Data Bit 3
25	B4	Blue Data Bit 4
26	B5	Blue Data Bit 5
27	B6	Blue Data Bit 6
28	B7	Blue Data Bit 7
29	GND	Ground
30	DCLK	Dot Data Clock
31	DISP	Display ONOFF
32	Hsync	Horizotal Sync Input
33	Vsync	Vertical Sync Input
34	NC	No Connection
35	AVDD	No Connection
36	AVDD	No Connection
37	NC	No Connection
38	Test1	No Connection
39	Test2	No Connection
40	Test3	No Connection

8. INPUT SIGNAL

8.1 Parallel RGB input timing Chart

8.2 Timing Specification

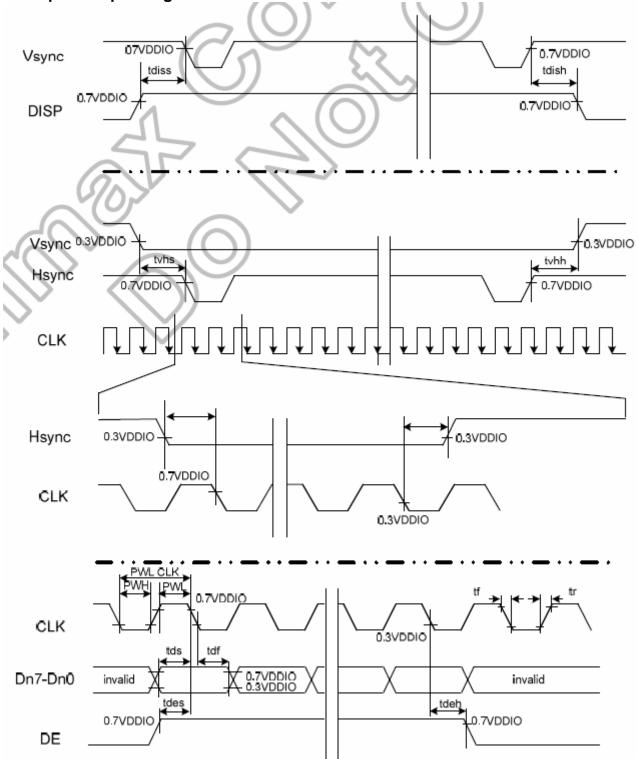
Parallel RGB input timing requirement										
PARAMETER	Symbol	Min.	Тур.	Max.	Unit					
Clock cycle	1/t _{c*1}		9	15	MHz					
Hsync cycle	1/f _⊬		17.14	-	KHz					
Vsync cycle	1/f _v		59.94	-	Hz					
	Horizonta	al Signal								
Horizontal cycle	th⁵²	575	575	605	CLK					
Horizontal display period	thd	480	480	480	CLK					
Horizontal front porch	thf	2	2	82	CLK					
Horizontal pulse width	thp	2	41	41	CLK					
Horizontal back porch	thb	2	2	41	CLK					
	Vertical	Signal								
Vertical cycle	tv	285-	286	511	Н					
Vertical display period	tvd	272	272	272	Н					
Vertical front porch	tvf	1	2	227	Н					
Vertical pulse width	tvp	1	10	11	Н					
Vertical back porch	tvb	1	2	11	Н					

Parallel RGB input timing requirement

Note:

 Unit: CLK=1/ fCLK , H=th
 Parallel interface. Clock frequency and horizontal signal parameters are tripled in serial interface. The Maximum clock frequency of serial interface is 33MHz 3. thd=480CLK, thf=2CLK, thp=41CLK, thb=2CLK, thf + fhp + ftb > 44

8.3 Timing Chart 2 Input setup timing requirement


PARAMETER	Symbo I	Min.	Тур.	Max.	Unit
DISP setup time	tdiss	10	-	-	ns
DISP hold time	tdish	10	-		ns
Clock period	PW _{CLK} *1	66.7	-	-	ns
Clock pulse high period	PWH ^{*1}	26.7	-	-	ns
Clock pulse low period	PWL ^{*1}	26.7	-	-	ns
Hsync setup time	t _{hs}	10	-	-	ns
Hsync hold time	t _{hh}	10	-		ns
Data setup time	t _{ds}	10	-	-	ns
Data hold time	t _{dh}	10	-	-	ns
DE setup time	t_{des}	10	-	-	ns
DE hold time	t_{deh}	10	-	-	ns
Vsync setup time	t _{vhs}	10	-	-	ns
Vsync hold time	\mathbf{t}_{vhh}	10	-	-	ns

Note

1. For parallel interface, maximum clock frequency is 15MHz.

2. tr, tf is defined 10% to 90% of signal amplitude.

8.4 Input setup timing Chart

9. Color Data Assignment

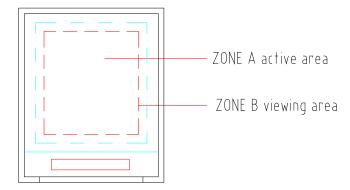
COLOR	INPUT	R DATA						G DATA									B DATA								
	DATA	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G_{5}	G4	G3	G2	G1	G0	B7	B 6	B5	B4	B3	B 2	B1	B0
		MSB							LSB	MSB							LSB	MSB							LSE
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BASIC	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
COLOR	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	CYAN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	MAGENTA	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	Û	0	0	0
	RED(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																									ĺ
	RED(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	Q	0	Q	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	- 0	0	0	0	0	0	0	0
	GREEN(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
GREEN																									
	GREEN(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	Q	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	BLUE(2)	0	0	0	0	0	Û	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
BLUE																									
	BLUE(254)	0	0	9	0	0	Q	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

10. QUALITY AND RELIABILITY

10.1Test Conditions

Tests should be conducted under the following conditions : Ambient temperature : $25 \pm 5^{\circ}C$ Humidity : $60 \pm 25\%$ RH.

10.2 Sampling Plan

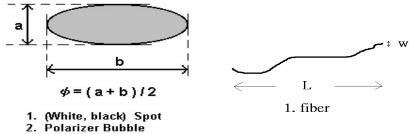

Sampling method shall be in accordance with MIL-STD-105E , level II, normal single sampling plan .

10.3 Acceptable Quality Level

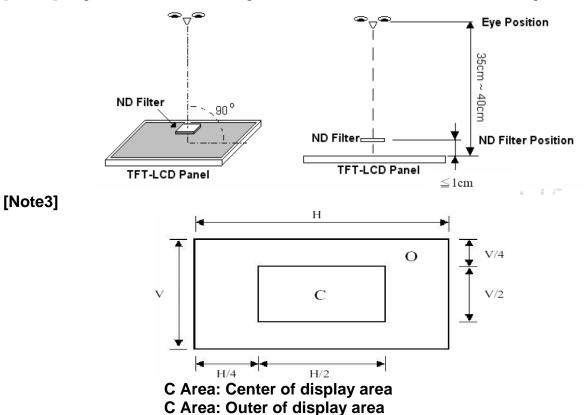
A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation.

10.4Appearance

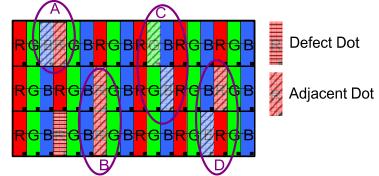
An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under florescent light. The inspection area of LCD panel shall be within the range of following limits.



11. Incoming Inspection Standard


No.	ltem	Criterion	Class of Defect	Accept able level	
1	Non display	No non display is allowed	Major	0.4	
2	Irregular operation	No irregular operation is al	lowed	Major	0.4
3	Short	No short are allowed		Major	0.4
4	Open	Any segments or commo are rejectable.	n patterns that don't activate	Major	0.4
5	Black/White spot (I)	Size D (mm) $D \le 0.1$ $0.1 < D \le 0.3$ $0.3 < D$ $\%$ 1: The distance of two defect	Acceptable number Ignore 4 %1 0 ts must be more than 20mm.	Minor	1.5
6	Dot Defect	Bright dotN \leq 2Dark dotN \leq 4Total dot defect (Bright dot + Dark dot)N \leq 6Minimum distance between dark dot and dark dotL \geq 5mm		Minor	1.5
7	Back Light	1. No Lighting is rejectable 2. Flickering and abnorma	Major	0.4	
8	Display pattern	A + B ≥ 0.30 0 < C Note: 1. Acceptable up to 3 d	$\frac{D+E}{2} \le 0.25 \frac{F+G}{2} \le 0.25$	Minor	1.5
9	Blemish & Foreign matters Size: $D = \frac{A+B}{2}$	Size D (mm) $D \le 0.15$ $0.15 < D \le 0.20$ $0.20 < D \le 0.30$ $0.30 < D$	Acceptable number Ignore 3 2 0	Minor	1.5

10	Scratch on Polarizer	$\begin{tabular}{ c c c c c c } \hline Width (mm) & Length (mm) & Acceptable number \\ \hline W \le 0.05 \mbox{ and } L \le 0.3 & Ignore \\ \hline 0.05 < W \le 0.03 & 0.3 < L \le 2.0 & 3 \\ \hline Note: The distance of two defects must be more than 20mm. \\ \hline \end{tabular}$	Minor	1.5
11	Bubble in polarizer	$D \leq 0.15$ mm, Ignored $0.15 \leq D \leq 0.5$ mm, N ≤ 4 D > 0.5 mm, not allowable D= (A+B) / 2	Minor	1.5
12	Stains on LCD panel surface	Stains that cannot be removed even when wiped lightly with a soft cloth or similar cleaning too are rejectable.	Minor	1.5
13	Rust in Bezel	Rust which is visible in the bezel is rejectable.	Minor	1.5
14	Defect of land surface contact (poor soldering)	Evident crevices which is visible are rejectable.	Minor	1.5
15	Parts mounting	 Failure to mount parts Parts not in the specifications are mounted Polarity, for example, is reversed 	Major Major Major	0.4
16	Parts alignment	 LSI, IC lead width is more than 50% beyond pad outline. Chip component is off center and more than 50% of the leads is off the pad outline. 	Minor Minor	1.5
17	Conductive foreign matter (Solder ball, Solder chips)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Major Minor Minor	0.4 1.5 1.5
18	Faulty PCB correction	 Due to PCB copper foil pattern burnout, the pattern is connected, using a jumper wire for repair; 2 or more places are corrected per PCB. Short circuited part is cut, and no resist coating has been performed. 	Minor Minor	1.5
19	mura	ND 6% , See, not allowable	Minor	



[Note2] Bright dot is defined through 6% transmission ND Filter as following.

[Note4]

Judge defect dot and adjacent dot as following. Allow below (as A, B, C and D status) adjacent defect dots, including bright and dart adjacent dot. And they will be counted 2 defect dots in total quantity.

- (1) The defects that are not defined above and considered to be problem shall be reviewed and discussed by both parties.
- (2) Defects on the Black Matrix, out of Display area, are not considered as a defect or counted.

12. Reliability Test

Test Item	Test Conditions							
High Temperature Operation	70±3°C , t=96 hrs							
Low Temperature Operation	-20±3°C , t=96 hrs							
High Temperature Storage	80±3°C , t=96 hrs	1,2						
Low Temperature Storage	-30±3°C , t=96 hrs	1,2						
Thermal Shock Test	-30°C ~ 25°C ~ 80°C 30 m in. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2						
Humidity Test	40 °C, Humidity 90%, 96 hrs	1,2						
Vibration Test (Packing)	Sweep frequency : 10 ~ 55 ~ 10 Hz/1min Amplitude : 0.75mm Test direction : X.Y.Z/3 axis Duration : 30min/each axis	2						

Note 1 : Condensation of water is not permitted on the module.

Note 2 : The module should be inspected after 1 hour storage in normal conditions (15-35°C , 45-65%RH).

Definitions of life end point :

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

13. USE PRECAUTIONS

13.1 Handling precautions

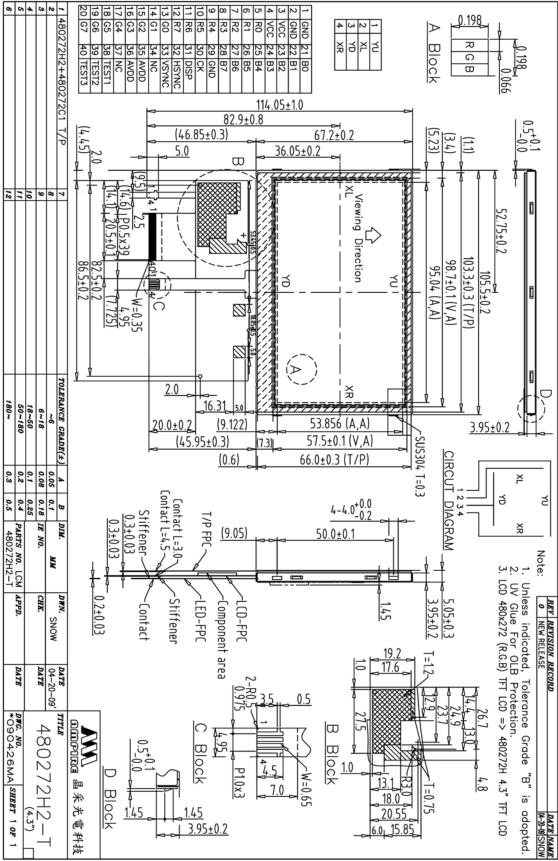
- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzene and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

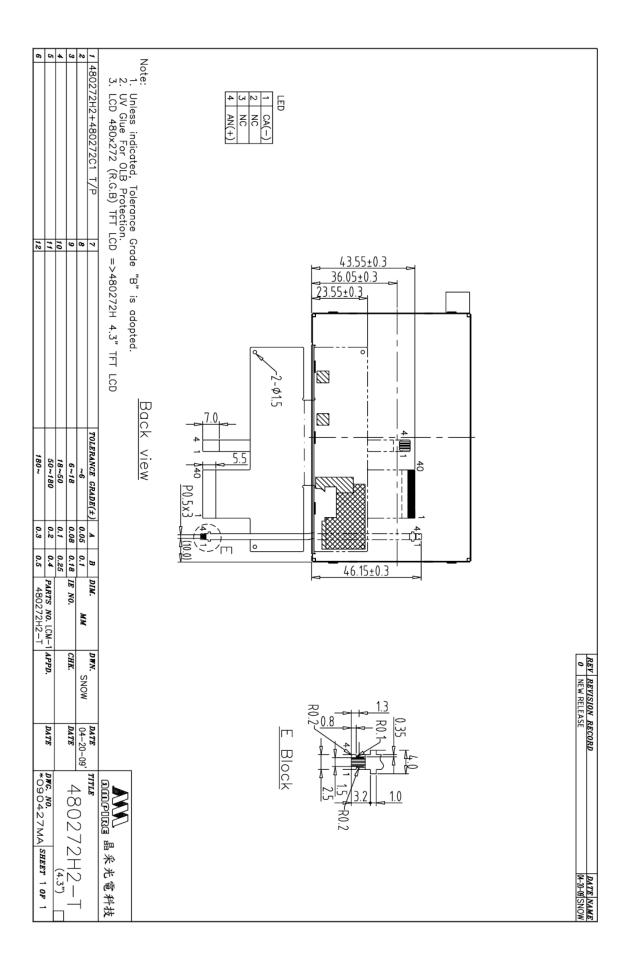
13.2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

13.3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.


13.4 Operating precautions


- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

13.5 Other

- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

14 OUTLINE DIMENSION

