

AMP DISPLAY INC.

SPECIFICATIONS

8.4-in COLOR TFT MODULE

CUSTOMER:	
CUSTOMER PART NO.	
AMP DISPLAY PART NO.	AM- 800600MTMQW-00H
APPROVED BY:	
DATE:	
	ROVED FOR SPECIFICATIONS ROVED FOR SPECIFICATION AND PROTOTYPES

AMP DISPLAY INC

9856 SIXTH STREET RANCHO CUCAMONGA CA 91730 TEL: 909-980-13410 FAX: 909-980-1419 WWW.AMPDISPLAY.COM

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2009/06/10	-	New Release	Emil
2009/07/09	-	Issued the official part No. AM-800600MTMQW-00H.	

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

1. INSTRUCTION

Ampire 8.4" Display Module is a color active matrix TFT-LCD that uses amorphous silicon TFT as a switching device. This model is composed of a TFT-LCD panel and LED Backlight. This TFT-LCD has a high resolution (800(R.G.B) X 600) and can display up to 262,144 colors.

1.1 Features

(1) Construction: a-Si TFT-LCD with driving system, White LED Backlight.

(2) LCD type: Transmissive, Normally White

(3) Number of the Colors: 16M colors (R,G,B 8 bit digital each)

(4) RGB Interface.

2. PHYSICAL SPECIFICATIONS

Ite	em	Specifications	unit
Display resolution(dot)		800RGB (W) x 600(H)	dots
Active area		170.40 (W) x 127.80(H)	mm
Pixel pitch		213 (W) x 213 (H)	um
Color configuration		R.G.B -stripe	
Overall dimension		189.75(W)x149.40(H)x5.00(D)	mm
Weight		250(typ)	g
Backlight unit		LED	
Display color		16M	colors
Power Logic		0.5	W
Consumption	B/L System	2.16	W

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

3. ABSOLUTE MAXIMUM RATINGS

3.1 TFT LCD Module

Item	Symbol	Min.	Max.	Unit	Note
Power Voltage	VCC	-0.3	6	V	GND=0V
	AVDD	-0.3	15	V	AGND=0V
	VCOM	0	6	V	
Logic Signal Input level	VI	-0.3	VCC+0.3	V	
Temperature Range	Operation	-20	70	$^{\circ}\!\mathbb{C}$	
Temperature Range	Storage	-30	80	$^{\circ}\!\mathbb{C}$	

- (1). All of the voltages listed above are with respective to GND =0V
- (2). Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above.

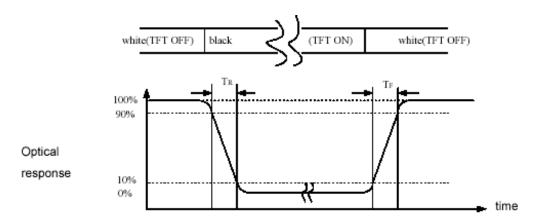
3.2 Back-Light Unit

Item	Symbol	Тур.	Max.	Unit	Note
Power Voltage	IL	180	-	mA	(1)(2)(3)
Fower voitage	VL	10.5	-	V	(1)(2)(3)

Note

- (1) Permanent damage may occur to the LCD module if beyond this specification.
 Functional operation should be restricted to the conditions described under normal operating conditions.
- (2) Ta =25±2°C
- (3) Test Condition: LED current 180 mA. The LED lifetime could be decreased if operating IL is larger than 180mA.

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD


4. OPTICAL CHARACTERISTICS

It	tem	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Response Time		T _r +T _f	Θ=Ф=0°	-	8	16	ms	(1)
Contrast ra	atio	CR	0-Ψ-0	480	600	-	-	(2)(3)
	l la si- a a tal			65	75	-		
Viewing	Horizontal	ΘR	CR≥10	65	75	-	Dog	<i>(</i> 5)
Angle		ΘU	CR≦ IU	50	60	-	Deg.	(5)
	Vertical	ΘD		60	70	-		
Luminance	Luminance (Center)			200	250	-	cd/m²	(3)(4) IL=180mA
Luminance Uniformity		ΔL	Θ=Ф=0°	-	70	-	%	(3)(4)
Color	. White	Wx		0.26	0.31	0.367		
chrom atic	ity Wille	Wy		0.28	0.33	0.38		

NOTE:

• These items are measured by BM-5A(TOPCON) or CA-1000(MINOLTA) in the dark room (no ambient light)

(1) Definition of Response Time (White-Black)

(2) Definition of Contrast Ratio

Measure contrast ratio on the below 5 points(refer to figurel,#1~#5point) and take the average value

Contrast ratio is calculated with the following formula:

Contrast Ratio(CR)=(White)Luminance of ON ÷ (Black)Luminance of OFF

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

(3) Definition of Luminance:

Measure white luminance on the same 5 points and take the average value

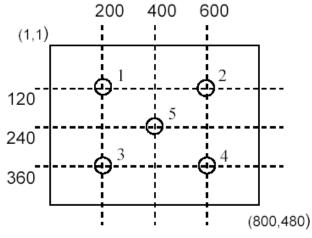
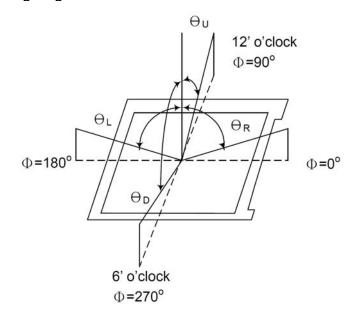


Fig.1 Measuring point


(4) Definition of Luminance Uniformity:

Measured Maximum luminance[L(MAX)] and Minimum luminance[L(MIN)] on the 5 points

Luminance Uniformity is calculated with the following formula:

 $\Delta L = [L(MIN) / L(MAX)] X 100\%$

(5) Definition of Viewing Angle

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

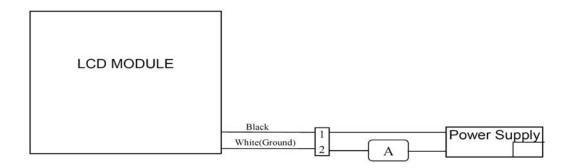
5. ELECTRICAL CHARACTERISTICS

5.1 TFT LCD Module voltage

ITEM	SYMBO L	MIN	TYP	MAX	UNIT	NOTE
	VCC	3.0	3.3	3.6	V	
Dower voltage	VGH	14	15	16	V	
Power voltage	VGL	-8.0	-7.0	-6.0	V	
	AVDD	9.85	10	10.15	V	
VCOM	VCOM	3.96	4.16	4.36	V	
Logio Input Voltago	VIH	VCC*0.7		VCC	V	Note(1)
Logic Input Voltage	VIL	0		VCC*0.3	V	
	I _{CC}	1	7.4	-	mA	VCC=3.3V Black Pattern
Current of newer aunnly	I _{ADD}	-	32.8	-	mA	AVDD=10V Black Pattern
Current of power supply	I _{GH}	-	0.281	-	mA	VGH=15V Black Pattern
	I _{GL}	-	0.569	-	mA	VGL=-7V Black Pattern
Input level of V1-V5	VX	AVDD/2	_	AVDD-0.1		
Input level of V6-V10	VX	0.1	-	AVDD/2		

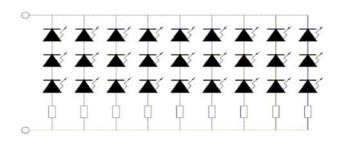
Note

(1): HSYNC, VSYNC, DE, Digital Data.


(2): Be sure to apply the power voltage as the power sequence spec.

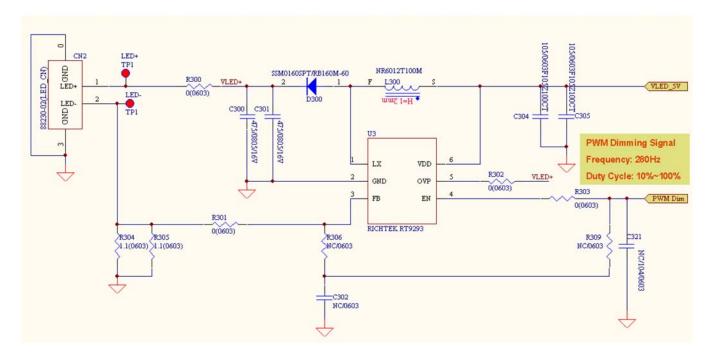
(3): DGND=AGND=0V.

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD


5.2 Backlight Driving Circuit

one a consideration of a constant									
ITEM	SYMBOL	MIN	TYP	MAX	UNIT	NOTE			
LED Voltage	VL		10.5		V	(2)			
LED Current	IL		180		mA				
LED life time	-	20000		-	Hr	(1)(2)			

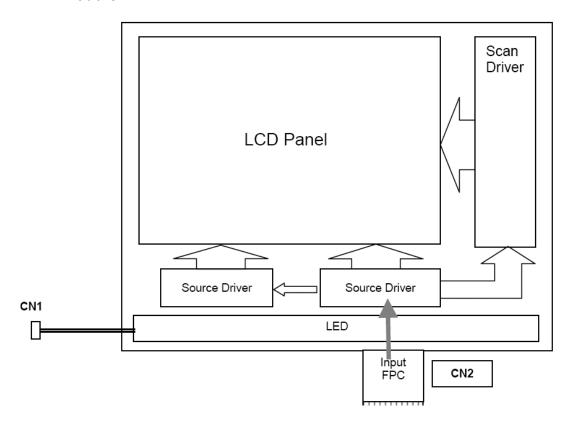
Note


(1) LED life time (Hr) can be defined as the time in which it continues to operate under the condition: $Ta=25\pm3^{\circ}C$, typical IL value indicated in the above table until the brightness becomes less than 50%. (2) The "LED life time" is defined as the module brightness decrease to 50% original brightness at $Ta=25^{\circ}C$ and IL=180mA. The LED lifetime could be decreased if operating IL is larger than 180mA. The constant current driving method is suggested.

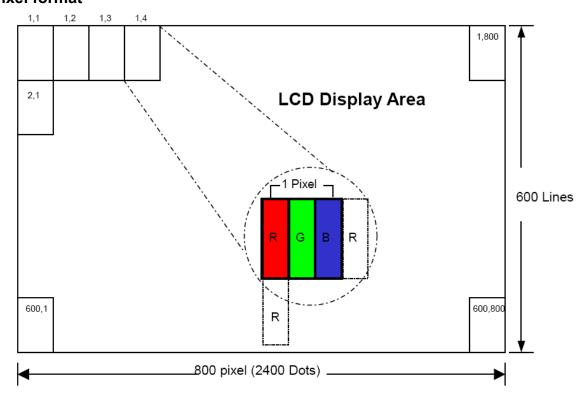
LED Light Bar Circuit

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

(3) Suggested Schematic of LED Back-Light Driver


Date: 2009/07/09

9


The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

6. Block diagram and Interface

6.1 TFT LCD Module

6.2 Pixel format

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

6.3 Interface

CN:2

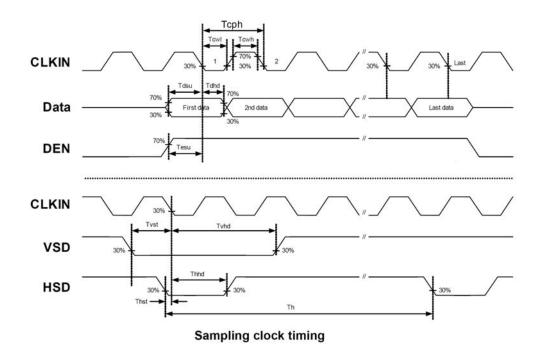
Pin No	Symbol	I/O	Function
1	AGND	P	Analog Ground
2	AVDD	P	Analog Power
3	VCC	P	Digital Ground
4	R0	<u> </u>	Data Input(LSB)
5	R1	i	Data Input
6	R2	İ	Data Input
7	R3	i	Data Input
8	R4		Data Input
9	R5		Data Input
10	R6		Data Input
11	R7		Data Input(MSB)
12	G0		Data Input(LSB)
13	G1	ı	Data Input
14	G2	l	Data Input
15	G3		Data Input
16	G4	I	Data Input
17	G5	I	Data Input
18	G6	ı	Data Input
19	G7	ı	Data Input(MSB)
20	В0	I	Data Input(LSB)
21	B1	I	Data Input
22	B2	I	Data Input
23	В3	I	Data Input
24	B4		Data Input
25	B5		Data Input
26	B6	I	Data Input
27	B7		Data Input(MSB)
28	DCLK		Clock Input
29	DE		Data Enable signal
30	HSD		Horizontal sync input. Negative polarity
31	VSD	I	Vertical sync input. Negative polarity
32	MODE3	I	DE/SYNC mode select .normally pull high H:DE mode .L:HSD/VSD mode
		l	Global reset pin. Active low to enter reset state. suggest to
33	RSTB	I	connecting with an RC reset circuit for stability .normally pull
	1.010		high.
		I	Standby mode, normally pull high STBYB="1",normal operation
34	STBYB		STBYB="0",timming control, source driver will turn off, all Input
		l	are high-Z
35	5 9410		Source right or left sequence control .SHLR="L", shift left: last data=S1<-S2S1200=first data; SHLR="H", shift right :first
35	SHLR		data=S1->S2S1200-IIIst data, SHLR- H, SHIII HIGHT HIST data=S1->S2S1200=last data
			data=0170201200=183t data

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

36	VCC	Р	Digital Ground
37	UPDN	I	gate up or down scan control. UPDN="L" , DOWN shift : G1->G2>G600 ; UPDN="H", up shift: G1<-G2<-G600
38	GND	Р	Digital Ground
39	AGND	Р	Analog Ground
40	AVDD	Р	Analog Power
41	VCOM	Р	For external VCOM DC input(Optional)
42	DITH	I	Dithering setting DITH="H" 6bit resolution (last 2 bits of input data truncated) (default setting) DITH="L" 8bit resolution
43	NC	-	Not connect
44	NC	-	Not connect
45	V10	Р	Gamma correction voltage reference
46	V9	Р	Gamma correction voltage reference
47	V8	Р	Gamma correction voltage reference
48	V7	Р	Gamma correction voltage reference
49	V6	Р	Gamma correction voltage reference
50	V5	Р	Gamma correction voltage reference
51	V4	Р	Gamma correction voltage reference
52	V3	Р	Gamma correction voltage reference
53	V2	Р	Gamma correction voltage reference
54	V1	Р	Gamma correction voltage reference
55	NC	-	Not connect
56	VGH	Р	Positive Power for TFT
57	VCC	Р	Digital Power
58	VGL	Р	Negative Power for TFT
59	GND	Р	Digital Ground
60	NC	-	Not connect

CN1: LED Power Source (BHSR-02VS-1) or equivalent Mating Connector: (SBHT-002T-P0.5) or equivalent

Terminal no.	Symbol	Function				
1	VL	LED power supply (high voltage)				
2	GL	LED power supply (Low voltage)				

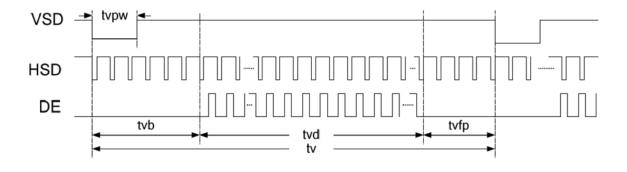

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

7. AC Timing characteristic

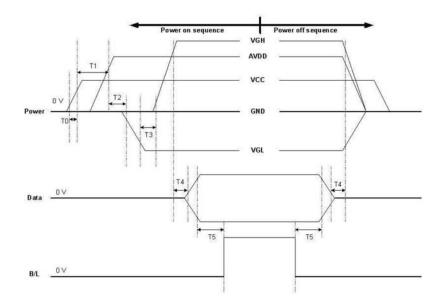
7-1 Timing Specification.

Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK cycle time	Tcph	20			ns	
DCLK frequency	fclk		40	50	MHz	
DCLK pulse duty	Tcwh	40	50	60	%	
VSD setup time	Tvst	8			ns	
VSD hold time	Tvhd	8			ns	
HSD setup time	Thst	8			ns	
HSD hold time	Thhd	8		5	ns	
Data setup time	Tdsu	8			ns	
Data hold time	Tdhd	8			ns	
DE setup time	Tesu	8			ns	
DE hold time	Tehd	8			ns	
Horizontal display area	thd		800		Tcph	
HSD period time	th		1000		Tcph	
HSD pulse width	thpw	1	48		Tcph	
HSD back porch	thb		40		Tcph	
HSD front porch	thfp		112		Tcph	
Vertical display area	tvd		600		th	
VSD period time	tv		660		th	
VSD pulse width	tvpw	***	3		th	
VSD back porch	tvb		39		th	
VSD front porch	tvfp		18		th	

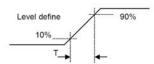
The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD


H pulse width (hpw) HSD CLK (HV mode) D07~D00 D17~D10 D27~D20 D07~D00 D17~D10 D27~D20 (DE mode) DEN H Blanking (thb)

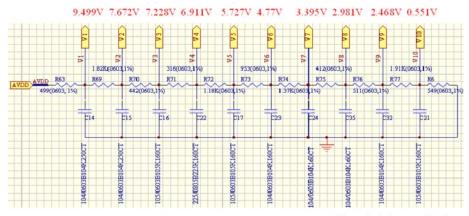
Horizontal display timing range


Active Area (thd)

Total Area (th)


"H front porch (thtp)

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD


Item	Min.	Тур.	Max.	Unit
T0	0.5		20	msec
T1	16			msec
T2	0			msec
Т3	20			μsec
T4	10		50	msec
T5	50			msec

Power On Sequence: VCC-> AVDD -> VGL -> VGH -> Data -> B/L
Power Off Sequence: B/L-> Data -> VGH -> VGL -> AVDD -> VCC

Notes: Data include R0~R7, G0~G7, B0~B7, HSD, VSD, DCLK, SHLR, UPDN, DE
MODE, RSTB, STBYB, SHLR, UPDN, DITH

7.2 Gamma Circuit

*Suggested Gamma Circuit.

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

8. QUALITY AND RELIABILITY

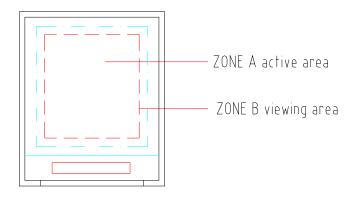
8.1 TEST CONDITIONS

Tests should be conducted under the following conditions:

Ambient temperature : $25 \pm 5^{\circ}$ C

Humidity : $60 \pm 25\%$ RH.

8.2 SAMPLING PLAN


Sampling method shall be in accordance with MIL-STD-105E , level II, normal single sampling plan .

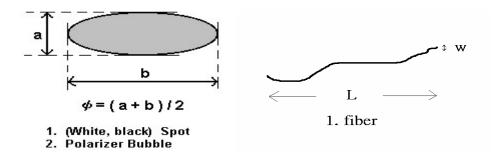
8.3 ACCEPTABLE QUALITY LEVEL

A major defect is defined as one that could cause failure to or materially reduce the usability of the unit for its intended purpose. A minor defect is one that does not materially reduce the usability of the unit for its intended purpose or is an infringement from established standards and has no significant bearing on its effective use or operation.

8.4 APPEARANCE

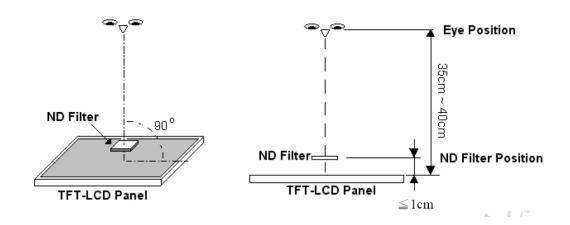
An appearance test should be conducted by human sight at approximately 30 cm distance from the LCD module under florescent light. The inspection area of LCD panel shall be within the range of following limits.

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

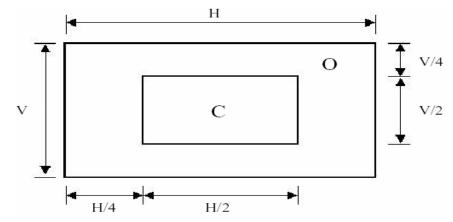

8.5 INCOMING INSPECTION STANDARD FOR TFT-LCD PANEL

DEFECT TYPE			LIMIT					Note	
VISUAL DEFECT	INTERNAL	SPOT	$\varphi < 0.15$ mm Ignore						
			0.15 mm $\leq \varphi \leq 0.5$ mm					I≦4	Note1
			$0.5 \mathrm{mm} < \varphi$					V=0	
		FIBER	$\begin{array}{c c} 0.03\text{mm} < W \leq 0.1\text{mm}, L \leq \\ 5\text{mm} \end{array}$					I ≦3	Note1
			1.0mm < W, 1.5mm < L				1	V=0	
		POLARIZER BUBBLE	φ < 0.15mm					gnore	=
			0.15 mm $\leq \varphi \leq 0.5$ mm					1≦2	Note1
			$0.5 \mathrm{mm} < \varphi$				1	√ =0	
		Mura	It' OK if mura is slight visible through 6%ND filter						
ELECTRICAL DEFECT	BRIGHT DOT		A Grade B G			3 Grad	е		
			C Area	O Area	Total	C Area	O Area	Total	Note3
			N≦0	N≦2	N≦2	N≦2	N≦3	N≦5	Note2
	DARK DOT		N≦2	N≦3	N≦3	N≦3	N≦5	N≦8	
	TOTAL DOT			N≦4		N≦5	N≦6	N≦8	Note2
	TWO ADJACENT DOT		N≦0	N≦1 pair	N≦1 pair	N≦1 pair	N≦1 pair	N≦1 pair	Note4
	THREE OR MORE		NOT ALLOWED						
	ADJACENT DOT								
	LINE DEFECT		NOT ALLOWED						

(1) One pixel consists of 3 sub-pixels, including R,G, and B dot.(Sub-pixel = Dot)

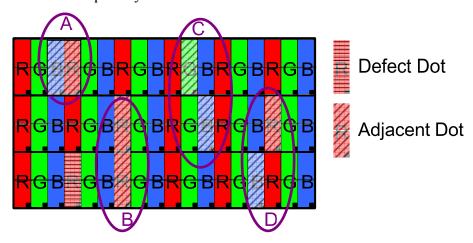

(2) LITTLE BRIGHT DOT ACCEPTABLE UNDER 6 % ND-Filter

[Note1] W: Width[mm], L: Length[mm], N: Number, φ : Average Diameter



[Note2] Bright dot is defined through 6% transmission ND Filter as following.

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD


[Note3]

C Area: Center of display area C Area: Outer of display area

[Note4]

Judge defect dot and adjacent dot as following. Allow below (as A, B, C and D status) adjacent defect dots, including bright and dart adjacent dot. And they will be counted 2 defect dots in total quantity.

- (1) The defects that are not defined above and considered to be problem shall be reviewed and discussed by both parties.
- (2) Defects on the Black Matrix, out of Display area, are not considered as a defect or counted.

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

8.6 Reliability Test

Test Item	Test Conditions				
High Temperature Operation	70±3°C , t=96 hrs				
Low Temperature Operation	-20±3°C , t=96 hrs				
High Temperature Storage	80±3°C, t=96 hrs	1,2			
Low Temperature Storage	-30±3°C , t=96 hrs	1,2			
Thermal Shock Test	-20°C ~ 25 °C ~ 70 °C 30 m in. 5 min. 30 min. (1 cycle) Total 5 cycle	1,2			
Humidity Test	60 °C, Humidity 90%, 96 hrs	1,2			
Vibration Test (Packing)	Sweep frequency: $10 \sim 55 \sim 10 \text{ Hz/1min}$ Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2			

Note 1: Condensation of water is not permitted on the module.

Note 2: The module should be inspected after 1 hour storage in normal conditions

(15-35°C , 45-65%RH).

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

9. USE PRECAUTIONS

9.1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

9.2 Installing precautions

- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

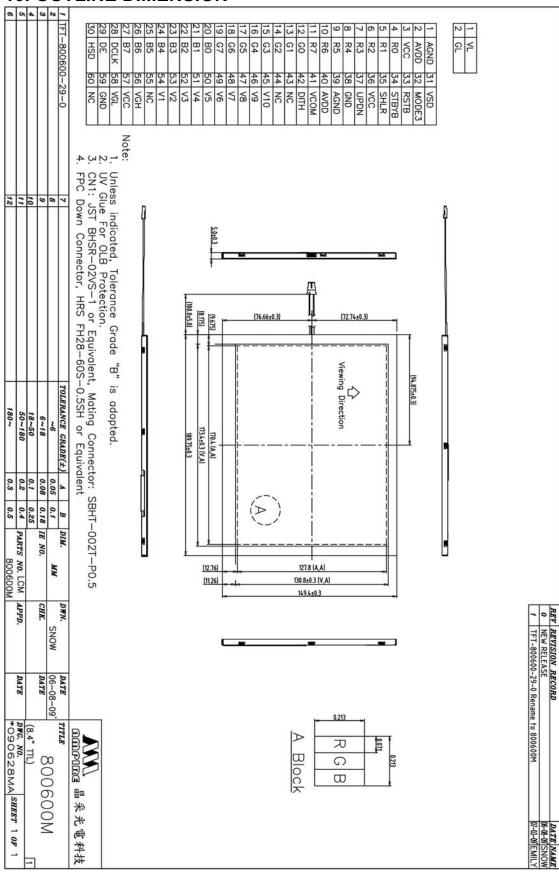
9.3 Storage precautions

- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions

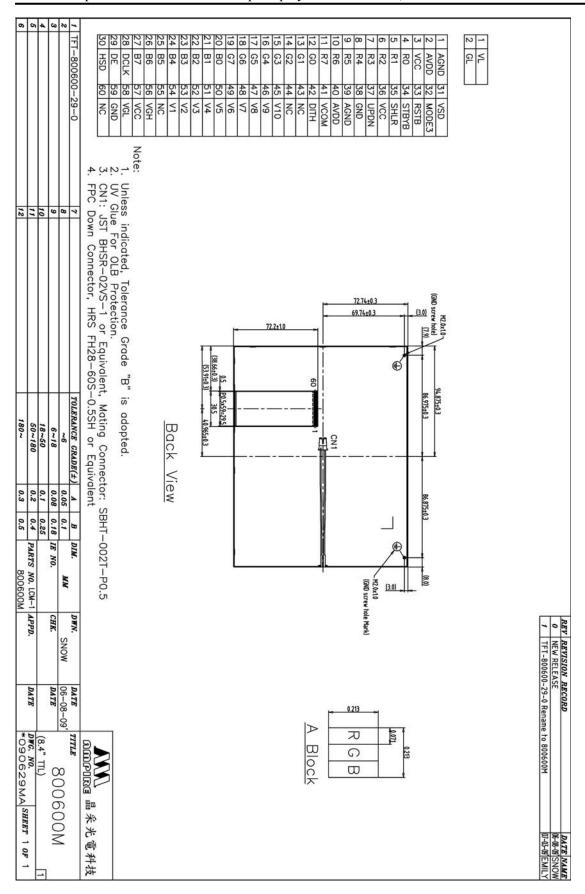
The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

as we recommend.

9.4 Operating precautions


- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.
- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LC drive voltage. Design the contents of the display, considering crosstalk.

9.5 Other


- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.
- 3) AMIPRE will provide one year warranty for all products and three months warrantee for all repairing products.

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

10. OUTLINE DIMENSION

The contents of this document are confidential and must not be disclosed wholl y or in part to any third part without the prior written consent of Amp Display / AMPIRE CO., LTD

