

AMP DISPLAY INC.

SPECIFICATIONS

8.0-in TFT MODULE

CUSTOMER:						
CUSTOMER PART NO.						
AMP DISPLAY PART NO.	AM-800600C3TMQW-B0H					
APPROVED BY:						
DATE:						
APPROVED FOR SPECIFICATIONS APPROVED FOR SPECIFICATION AND PROTOTYPES						

AMP DISPLAY INC

9856 SIXTH STREET RANCHO CUCAMONGA CA 91730 TEL: 909-980-13410 FAX: 909-980-1419 WWW.AMPDISPLAY.COM

RECORD OF REVISION

Revision Date	Page	Contents	Editor
2009/6/10		New Release	JOHN

Date: 2009/06/10 AMP DISPLAY 2

1. Features

8 inch Amorphous-TFT-LCD (Thin Film Transistor Liquid Crystal Display) module. This module is composed of a 8" TFT-LCD panel, LED backlight and power circuit unit.

(1) Construction: 8" a-Si TFT active matrix, White LED Backlight.

(2) Resolution (pixel): 800(R.G.B) X600

(3) Number of the Colors: 262K colors (R, G, B 6 bit digital each)

(4) LCD type: Transmissive, normally White

(5) Interface: 20 Pin (LVDS interface)

(6) Power Supply Voltage: 3.3V for logic voltage.

(7) Viewing Direction: 6 O'clock (The direction it's hard to be discolored)

2. PHYSICAL SPECIFICATIONS

Item	Specifications	unit
LCD size	8 inch (Diagonal)	
Resolution	800 x 3(RGB) x 600	dot
Dot pitch	0.0675(W) x 0.2025(H)	mm
Active area	162.0(W) x 121.5(H)	mm
Module size	183.0(W) x 141.0(H) x 9.06(D)	mm
Surface treatment	Anti-Glare	
Color arrangement	RGB-stripe	
interface	Digital	
Weight	266	g

Date: 2009/06/10 AMP DISPLAY

3. ABSOLUTE MAX. RATINGS

Item	Symbol	Val	ues	UNIT	Note	
item	Зуппоот	Min.	Max.	CIVIT	Note	
Power voltage	VCC	-0.3	+6.0	V		
Input signal voltage	Vi	-0.3	VCC+0.3	V	Note 1	
Operation temperature	Тор	-20	70	$^{\circ}$ C		
Storage temperature	Тѕт	-30	80	$^{\circ}\!\mathbb{C}$		

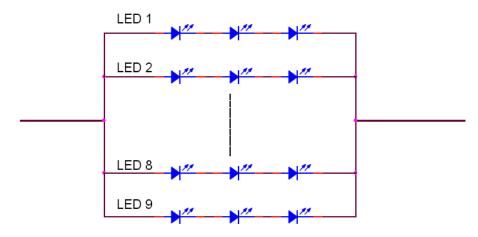
Note 1: The product is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above.

4. ELECTRICAL CHARACTERISTICS

4-1 Typical Operation Conditions

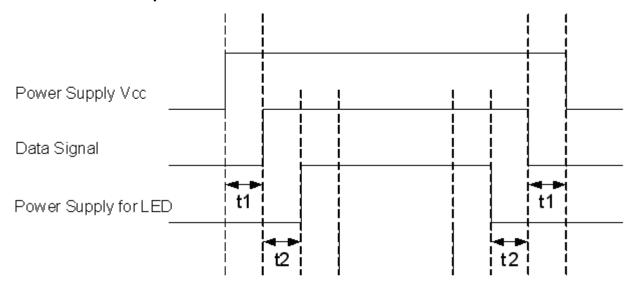
Item	Symbol		Values	Uni	Domork		
петт	Symbol	MIN	TYP	MAX	t	Remark	
Power Voltage	V_{CC}	3.0	3.3	3.6	\	Note 1,2	
Power Consumption	I _{cc}		160		mA	Note 1,2 VCC=3.3V	
Logic input high voltage	V_{iH}	0.7 V _{CC}	-	V_{CC}	V	Note 3	
Logic input low voltage	V _{iL}	GND	-	0.3 V _{CC}	V	Note 3	

Note 1: Value for Power Board combined panel.


Note 2: VCC setting should match the signals output voltage (refer to Note 3) of customer's system board.

Note 3: DCLK, HS, VS, RSTB, UPDN, STLR, MODE, DITHB.

4-2 Backlight Driving Conditions


Item	Symbol		Values	Unit	Note	
	Symbol	Min.	Тур.	Max.	Unit	Note
LED voltage	VL	9.3	9.9	10.5	V	Note 1
LED current	IL	162	180	198	mA	Note 1
LED life time		20,000			Hr	Note 2

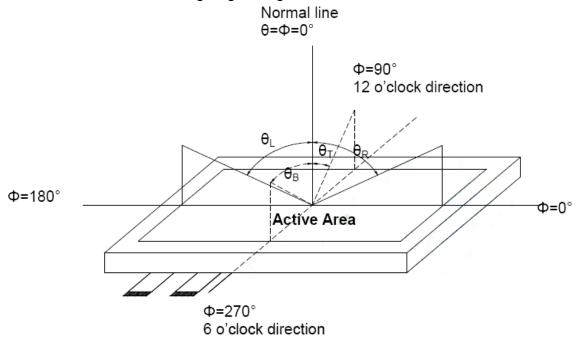
Note 2 : The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and IL=180mA. The LED lifetime could be decreased if operating IL is larger than 180mA.

Date: 2009/06/10

4-3 Power Sequence

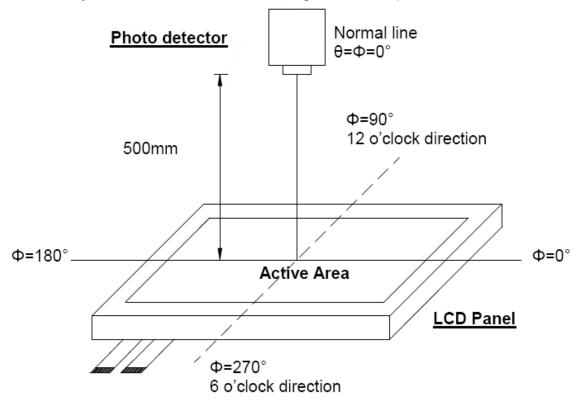
t1 > 50 mSec

t2 = 200 mSec

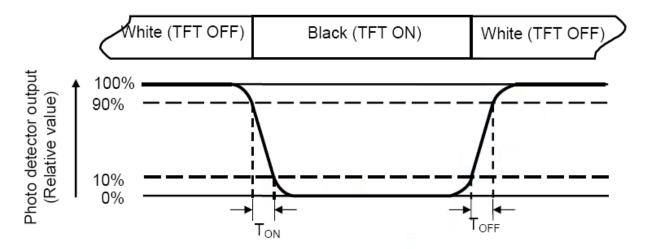

5. Optical Specifications

Itama	Cymph al	Condition		Values	Unit	Note		
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	heta L	Ф = 180° (9 o'clock)	60	70				
Viewing angle	θ R	$\Phi = 0^{\circ}$ (3 o'clock)	60	70		4	Natad	
(CR≧10)	θ T	$\Phi = 90^{\circ}$ (12 o'clock)	40	50		degree	Note1	
	θ B	Φ = 270° (6 o'clock)	60	70				
Doggoogo timo	TON			10	20	msec	Note3	
Response time	TOFF			15	30	msec	Notes	
Contrast ratio	CR		400	500			Note4	
Color	WX	Normal θ =Φ=0°	0.26	0.31	0.36		Note5	
chromaticity	WY		0.28	0.33	0.38		Note6	
Luminance	L		200	250		cd/m²	Note6	
Luminance uniformity	YU		70	75		%	Note7	

Test Conditions:


- 1. VCC = 3.3V, I_L = 180mA (Backlight current), the ambient temperature is 25 $^{\circ}$ C.
- 2. The test systems refer to Note 2.

Note 1: Definition of viewing angle range


Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° / Height: 500mm.)

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (Ton) is the time between photo detector output intensity changed from 90% to 10%. And fall time (Toff) is the time between photo detector output intensity changed from 10% to 90%.

Note 4: Definition of contrast ratio

Contrast ratio (CR) =

Luminance measured when LCD on the "White" state

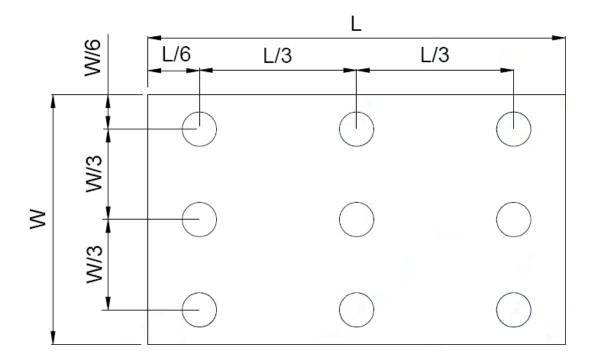
Luminance measured when LCD on the "Black" state

Note 5 : Definition of color chromaticity (CIE1931)

Color coordinated measured at center point of LCD.

Note 6 : All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 7: Definition of Luminance Uniformity


Active area is divided into 9 measuring areas (Refer to bellow figure). Every measuring point is placed at the center of each measuring area.

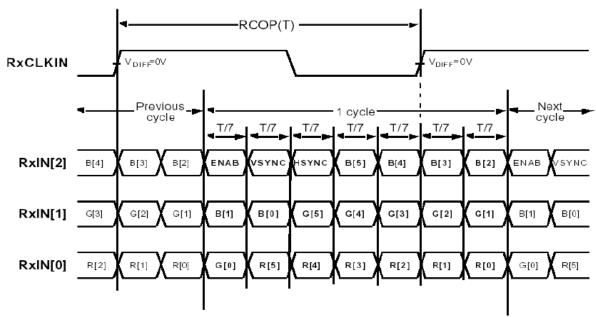
Bmin

Luminance Uniformity (Yu) = ____

Bmax

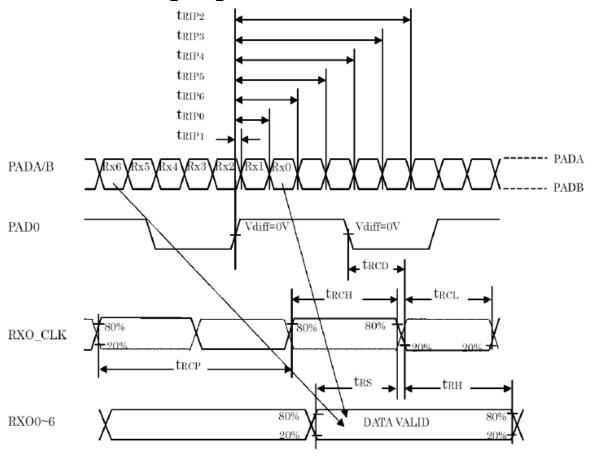
L ----- Active area length W ----- Active area width

B_{max}: The measured maximum luminance of all measurement position. B_{min}: The measured minimum luminance of all measurement position.

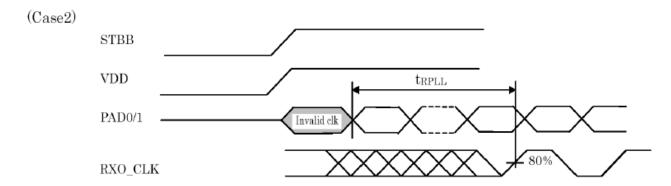

6. INTERFACE

TFT LCD Panel Driving Section

Pin No.	Symbol	Description	Note
1	VDD	POWER SUPPLY:3.3V	
2	VDD	POWER SUPPLY:3.3V	
3	Gnd	Power Ground	
4	Gnd	Power Ground	
5	INO-	Transmission Data	
6	IN0+	Transmission Data	
7	Gnd	Power Ground	
8	IN1-	Transmission Data	
9	IN1+	Transmission Data	
10	Gnd	Power Ground	
11	IN2-	Transmission Data	
12	IN2+	Transmission Data	
13	Gnd	Power Ground	
14	CLK-	Sampling Clock	
15	CLK+	Sampling Clock	
16	Gnd	Power Ground	
17	NC	No Connect	
18	NC	No Connect	
19	Gnd	Power Ground	
20	Gnd	Power Ground	


7. INTERFACE TIMING (The information as below is to be defined.)

7-1 LVDS SIGNAL:


Note: R/G/B[5]s are MSBs and R/G/B[0]s are LSBs

7-2 LVDS AC Timing Diagram:

7-3 Phase Lock Loop Set Time:

7-4 Switching Characteristics:

< recommended operating condition (unless otherwise noted) >

Parameter	Symbol	min	typ	max	Unit
RXO_CLK Period	$t_{ m RCP}$	11.76	Т	50	ns
RXO_CLK High Time	$t_{ m RCH}$	-	T/2	-	ns
RXO_CLK Low Time	$t_{ m RCL}$	-	T/2	-	ns
PAD0/1 to RXO_CLK Delay	$t_{ m RCD}$		3T/7	-	ns
Data Setup to RXO_CLK	${ m t_{RS}}$	1.9		-	ns
Data Hold from RXO_CLK	${ m t_{RH}}$	3.0			ns
Input Data Position 0 (T=11.76ns) (note1)	$t_{\mathrm{RIP}1}$	-0.4	0	0.4	ns
Input Data Position 1 (T=11.76ns) (note1)	$t_{ m RIP0}$	T/7-0.4	T/7	T/7+0.4	ns
Input Data Position 2 (T=11.76ns) (note1)	${ m t_{RIP6}}$	2T/7·0.4	2 T /7	2T/7+0.4	ns
Input Data Position 3 (T=11.76ns) (note1)	${ m t_{RIP5}}$	3T/7·0.4	3 T /7	3T/7+0.4	ns
Input Data Position 4 (T=11.76ns) (note1)	${ m t_{RIP4}}$	4T/7-0.4	4T/7	4T/7+0.4	ns
Input Data Position 5 (T=11.76ns) (note1)	$t_{ m RIP3}$	5T/7-0.4	5T/7	5T/7+0.4	ns
Input Data Position 6 (T=11.76ns) (note1)	${ m t_{RIP2}}$	6T/7·0.4	6T/7	6T/7+0.4	ns
Phase Lock Loop Set	${ m t_{RPLL}}$	-		10	ms

note1 : VDD=3.3V, Ta= 25° C

8. RELIABILITY TEST CONDITIONS

(Note 3)

Item	Test Conditions	Note
High Temperature Storage	Ta = 80°C 240 hrs	Note 1,4
Low Temperature Storage	Ta = -30°C 240 hrs	Note 1,4
High Temperature Operation	Ts = 70°C 240 hrs	Note 2,4
Low Temperature Operation	Ta = -20°C 240 hrs	Note1,4
Operate at High Temperature and Humidity	+40℃, 90%RH 240 hrs	
Thermal Shock	-30 $^{\circ}$ C /30 min ~ +80 $^{\circ}$ C /30 min for a total 100 cycles, Start with cold temperature and end with high temperature	
Vibration Test	Frequency range: 10 ~ 55Hz Stroke: 1.5mm Sweep: 10Hz ~ 55Hz ~ 10Hz 2 hours for each direction of X. Y. Z. (6 hours for total)	
Mechanical Shock	100G 6ms, ±X, ±Y, ±Z 3 times for each direction	
Package Vibration Test	Random Vibration: 0.015G*G/Hz from 5-200HZ, -6dB/Octave from 200-500Hz 2 hours for each direction of X. Y. Z. (6 hours for total)	
Package Drop Test	Height : 60 cm 1 comer, 3 edges, 6 surfaces	
Electro Static Discharge	±2KV, Human Body Mode, 100pF/1500Ω	

- Note 1: Ta is the ambient temperature of samples.
- Note 2: Ts is the temperature of panel's surface.
- Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.
- Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Display Quality

1. Function Related:

The function defects of line defect, abnormal display, and no display are considered Major defects.

2. Bright / Dark Dots:

Defect Type	Specification	Major	Minor
Bright Dots	N <= 5		•

Note: The definition of dot: The size of a defective dot over 1/2 of whole dot is regarded as one defective dot.

Bright dot: Dots appear bright and unchanged in size in which LCD panel is displaying under black pattern.

Dark dot: Dots appear dark and unchanged in size in which LCD panel is displaying under pure red, green, blue pattern.

3. Pixel Definition:

R	G	В	R	G	В	R	G	В	Dot Defec	t
R	G	В	R	G	В	R	G	В	Adjacent I	Oot Defect
R	G	В	R	G	В	R	G	В	Cluster	

Note 1: If pixel or partial sub-pixel defects exceed 50% of the affected pixel or sub-pixel area, it shall be considered as 1 defect.

Note 2: Extraneous substance and scratch not affecting the display of image, for instance, extraneous substance under polarizer film but outside the display area, or scratch on metal bezel and backlight module or polarizer film outside the display area, shall not be considered as defective or non-conforming.

9. General Precautions

9-1 Safety

Liquid crystal is poisonous. Do not put it your month. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

9-2 Handling

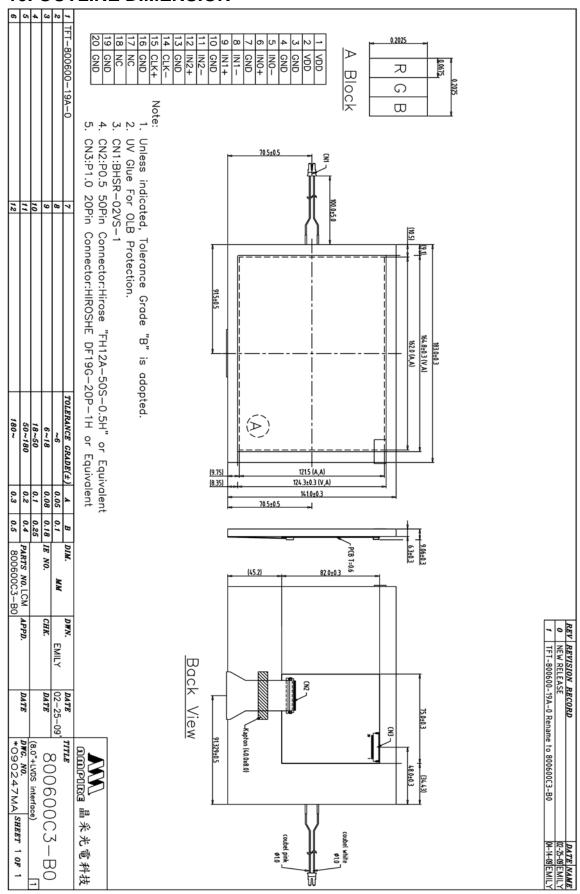
- 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.
- 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.
- 3. To avoid contamination on the display surface, do not touch the module surface with bare hands.
- 4. Keep a space so that the LCD panels do not touch other components.
- 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.
- 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.
- 7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

9-3 Static Electricity

- 1. Be sure to ground module before turning on power or operation module.
- 2. Do not apply voltage which exceeds the absolute maximum rating value.

9-4 Storage

- 1. Store the module in a dark room where must keep at +25±10℃ and 65%RH or less
- 2. Do not store the module in surroundings containing organic solvent or corrosive gas.
- 3. Store the module in an anti-electrostatic container or bag.


9-5 Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

9-5 Others

1. AMIPRE will provide one year warrantee for all products and three months warrantee for all repairing products.

10. OUTLINE DIMENSION

